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preface
Throughout our software careers, we’ve had the opportunity to participate in several

refactoring projects. The narrative is often the same: products need to scale, but time

is limited. This situation leads to extensive development efforts over months, filled

with discussions about patterns and languages.

 Refactoring with Java and Go involved significant challenges, including constant

file moving, package exports, system wrappers, and outright rewrites of existing sys-

tems. The paths to success were rarely clearly defined. This book aims to provide you

with many of these patterns, using a language designed for breaking down and rewrit-

ing existing systems. Refactoring to Rust demonstrates how Rust can seamlessly integrate

into your ecosystem, delivering scaling benefits from day one due to the nature of the

language.

 Rust brings advantages, such as type safety and memory safety, along with perfor-

mance gains attributed to these properties. In this book, you will learn how Rust can

enhance nearly any project. Positioned to replace existing languages like C and C++,

Rust stands out for its robust toolchain and memory safety features. We will also

explore how Rust can interact with languages like Python, revealing performance

improvements when building libraries and modules that work across both languages.

Additionally, we’ll discover unexpected uses for Rust, such as in web browsers and as a

universal runtime.

 Overall, this book aims not only to showcase the power of Rust but also to equip

you with the skills to refactor large systems with confidence.
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about this book
Martin Fowler’s renowned book Refactoring emphasizes the primary goal of refactor-

ing: to enhance the design of existing code. Readers familiar with the book will recog-

nize its method of presenting various code segments, followed by improved

alternatives that enhance readability, efficiency, or simplicity. While the strategies have

evolved in the second edition, the core message remains unchanged: functional code

can always be improved.

 Refactoring to Rust outlines strategies for transitioning from one programming lan-

guage to another while preserving the external behavior of the code. How is this

achieved? As we will examine, Rust is designed to gradually replace other languages by

integrating and decomposing existing code—much like the process of rusting iron—

and substituting it with Rust code. Initially focused on replacing C++, the project has

expanded to include JavaScript and Python.

Who should read this book

This book is focused on developers who specialize in other languages, such as C, C++,

Python, and JavaScript, but want to learn Rust. While this book does not give you an

in-depth view of the language, it does provide practical examples and use cases to

change your code to Rust. No formal understanding of Rust is needed, although it is

helpful.

How this book is organized: A roadmap

In line with Fowler’s approach, we will present challenges in one language and

demonstrate how to refactor these complexities in Rust. The goal is to maintain the

underlying functionality of the application while using Rust’s speed and safety to

enhance the overall system.
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 Our exploration begins with an introduction to the Rust language, discussing its

mechanics and comparing it to languages like C, C++, and Python. This information is

framed within the context of refactoring, emphasizing how we can systematically

improve our systems instead of allowing them to devolve into unmanageable code. We

will also delve into Rust’s advanced features, such as variable lifetime and ownership,

which are crucial to mastering the language.

 The first major focus will be on C, the foundational language for many others. In

chapter 3, we will examine Rust’s ability to create both safe and unsafe code, explore

wrapping dangerous code in Rust, and utilize debugging tools. This foundation will

prepare us for chapter 4, where we will integrate Rust into an existing C codebase,

manipulate memory, and add new functionality to an NGINX server.

 After our initial integration into another system, in chapter 5, we will consider Rust

as a library tool. Creating packages compatible with other projects is an effective way

to refactor applications, provided that these libraries offer enhanced functionality. We

will also explore benchmarking and performance metrics to justify the transition from

older languages to Rust. In chapters 6, 7, and 8, we will demonstrate how these pack-

ages can be used to refactor Python code, either by executing Python within Rust or

by embedding Rust into Python.

 The final two chapters will challenge us with advanced applications of Rust. Chap-

ter 9 will focus on compiling Rust to run in web browsers using a new format called

Wasm. Chapter 10 will use this technology to build a universal runtime, providing a

flexible (yet complex) method for refactoring or interacting with existing code.

 The chapters are not required to be read in order, and if you are already familiar

with Rust, you can probably skip the first two chapters unless you want a refresher. If

you are eager to jump into a particular language, chapters 3 and 4 focus on integrat-

ing with C and C++, and chapters 6 through 8 focus on Python, while chapter 9

focuses on JavaScript.

 Chapter 10 can also be read on its own and offers a different way to refactor by

changing the environment in which an application runs rather than changing the

code itself.

 Refactoring is more art than science. Both Martin Fowler’s book and ours offer

patterns to follow; it will be your responsibility to apply these techniques effectively.

About the code 

The code covered in this book mostly focuses on Rust, but within the context of other

languages. The basics of Rust are covered at the beginning, and then integration with

C, Python, and JavaScript occurs throughout the remainder of the book. These lan-

guages are not taught but are expected to be known by the reader if they are refactor-

ing code in that language.

 There are no limitations on hardware or the software used. Nothing in the text is

specific to a particular operating system or requires any special setup other than an
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installation of Rust. Additional libraries and tools are mentioned in the chapters, but

the text is dedicated to this setup and is not required by the reader to do beforehand.

 In addition, Rust is a growing language, and therefore, the syntax and libraries

may shift over time. We have taken care to select stable libraries in our examples to

accommodate this as much as possible.

 The book contains many examples of source code in numbered listings and in line

with normal text. In both cases, source code is formatted in a fixed-width font like

this to separate it from ordinary text. 

 In many cases, the original source code has been reformatted; we’ve added line

breaks and reworked indentation to accommodate the available page space in the

book. In some cases, even this is not enough, and listings include line-continuation

markers (➥). Additionally, comments in the source code have often been removed

from the listings when the code is described in the text. Code annotations accompany

many of the listings, highlighting important concepts.

 You can get executable snippets of code from the liveBook (online) version of this

book at https://livebook.manning.com/book/refactoring-to-rust. The complete code

for the examples in the book is available for download from the Manning website at

https://www.manning.com/books/refactoring-to-rust, and from GitHub at https://

github.com/lily-mara/refactoring-to-rust.

liveBook discussion forum

Purchase of Refactoring to Rust includes free access to liveBook, Manning’s online read-

ing platform. Using liveBook’s exclusive discussion features, you can attach comments

to the book globally or to specific sections or paragraphs. It’s a snap to make notes for

yourself, ask and answer technical questions, and receive help from the author and

other users. To access the forum, go to https://livebook.manning.com/book/

refactoring-to-rust/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful

dialogue between individual readers and between readers and the authors can take

place. It is not a commitment to any specific amount of participation on the part of

the authors, whose contribution to the forum remains voluntary (and unpaid). We

suggest you try asking the authors some challenging questions lest their interests stray!

The forum and the archives of previous discussions will be accessible from the pub-

lisher’s website as long as the book is in print.

https://livebook.manning.com/book/refactoring-to-rust
https://www.manning.com/books/refactoring-to-rust
https://github.com/lily-mara/refactoring-to-rust
https://github.com/lily-mara/refactoring-to-rust
https://github.com/lily-mara/refactoring-to-rust
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1

Why refactor to Rust

If you have ever heard of the Rust programming language, you may have heard of

software companies rewriting their code in Rust from a slower, interpreted lan-

guage. A few of these companies have published blog posts lauding the perfor-

mance benefits of Rust over their previous systems, and they tell a very tidy story:

other languages are slow, and Rust is fast. Therefore, rewrite your code in Rust, and

your systems will be fast.

 While it may be tempting to think that we can all just rewrite our code when some-

thing better comes along, we all know the reality that software does not exist in a bub-

ble of infinite resources. Performance improvements and technical debt payments

need to be balanced with feature development, user requests, and the million other

This chapter covers

 Why you may want to refactor an application

 Why Rust is a good choice for refactoring

 When it is and is not appropriate to start a 

refactoring project

 A high-level overview of methods you can use to 

refactor your code into Rust
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things that come along with modern software work. While reimplementing functional-

ity in a new language, you also need to ensure that you are providing a consistent and

reliable service to your users. How, then, can a developer hope to improve their code

base while maintaining the rapid pace of development and reliability expected? The

answer lies not in big bang–style rewrites but in incremental refactoring.

1.1 What is refactoring?

Refactoring is the process of restructuring code so that it performs better, is easier to

maintain, or meets some other definition of “better.” There is a distinction, however

fuzzy, between refactoring and rewriting. The difference between the two comes down

to the size of the operation. 

 Rewriting is taking a whole application or a large part of an application and reim-

plementing it from scratch. We might rewrite to take advantage of a new program-

ming language or data storage model or just because the current the system is difficult

to maintain, and it seems easier to throw it out and start over than to improve it.

 Refactoring is rewriting on a much smaller scale. Instead of aiming to replace the

current system wholesale, we want to find the parts of the system that need the most

help and replace the smallest amount of code possible to improve the system. The

benefits of refactoring over rewriting are numerous:

 Because the current system is the “new system,” it can continue to run and serve

customers while the refactoring is in progress. We can deploy a series of very

small code changes to ensure that we know what change caused a problem. If

we rewrite and deploy a whole new system all at once, how would we know what

part of the system is causing errors if we see them?

 Existing code probably already has years of production experience and moni-

toring around it. The experience others have of operating and debugging exist-

ing code should not be undervalued. If a new system has a problem that you

have no experience dealing with, how are you going to find it?

 Ideally, existing code will have automated testing associated with it. These tests

can be reused to verify that our refactored code fulfills the same contract as the

existing code. If your existing code does not have automated tests, refactoring is

a great impetus to start writing them!

Figure 1.1 displays how deploys over time might be different in a rewrite versus a

refactor.

 When rewriting a system, changes must often be bundled and deployed together.

This decreases velocity and increases the risk of errors in deployments. The longer

features sit on a branch or in a stale staging environment, the more difficult it will be

to debug that code when it is deployed. If all software has some risk of a bug, increas-

ing the frequency of changes and decreasing the lines of code changed in deploy-

ments will help us find and eliminate bugs in the least amount of time.

 When refactoring, we want to make small, independent changes that can be

deployed as soon as possible. We add metrics and monitoring around our changes to
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Figure 1.1 How refactoring and rewriting affect the size of deployments

ensure that when they are deployed, results remain consistent. This process allows us

to quickly and consistently deploy small changes that fix bugs, add features, or

improve the performance of our system.

 That being said, we must consider a number of factors when refactoring code

that’s already doing its job:

 Ensuring that behavior is consistent between the old and new code

– Using existing automated testing

– Writing new tests that deal with new data structures introduced by the

refactoring

Refactoring vs. rewriting and the size of deployments

Time

In the refactoring model, 
we make small changes
to the codebase, releasing
frequently so that code
causing errors is noticed
quickly and fixed.

Some changes may be larger
than others if necessary, but
deploying rapidly and fixing
rapidly are the most important
things.

Since the changes are small,
some of them may be bug
fixes, but some can also be
delivering new features or
better performance as its
they’re ready for the users.

R
e
fa

c
to

ri
n
g

Lines of code

changed since 

last release

Time

When rewriting a system from the
ground up, we can’t as easily deploy
changes as they’re ready because the
new system is a complete unit.

This initial deployment represents a 
massive changeset. It has the potential 
to cause bugs in a lot of different parts 
of the system and needs follow-up 
deployments that are exclusively for the
purpose of fixing bugs.

R
e
w

ri
ti
n
g

Lines of code

changed since

last release



4 CHAPTER 1 Why refactor to Rust

 Deploying the new code

– Determining the level of separation between the old and new code’s deploy-

ment environments

– Deciding how to compare the performance of the systems while they are

both running

– Controlling the rollout of the new system so that only a small percentage of

customers access the new code paths

In this book, we will explore techniques and approaches that can be used to refactor

code that is slow or difficult to reason about into Rust. We’ll cover how to find the

most critical parts of your code in need of refactoring, how to make your existing code

talk to Rust, how to test your newly refactored code, and more. 

1.2 What is Rust?

Rust is a programming language that emphasizes fast run time, high reliability, and

memory safety. According to rust-lang.org, Rust is “a language empowering everyone

to build reliable and efficient software.” What does that mean?

 Empowering—Rust aims to give developers abilities that they would not other-

wise have.

 Welcoming—The Rust community is extremely welcoming to everyone regard-

less of background. Rust developers span every skill level; some have Rust as

their first programming language, and others know many. Some are coming

from low-level programming, while others are application developers in lan-

guages like Python, Ruby, and JavaScript.

 Reliable—Rust software aims to be fault tolerant and explicit about how errors

are handled so that nothing slips through the cracks.

 Efficient—Due to being compiled directly to machine code and the lack of a

run-time garbage collector, Rust code is much faster right out of the box than

code written in interpreted languages like Python, Ruby, and JavaScript. In

addition, Rust provides developers with the tools to control lower-level details

like memory allocations when required, which can lead to massive speedups

while still keeping your application easy to understand.

1.3 Why Rust?

Rust combines memory safety, performance, and a fantastic type system; these fea-

tures act together to keep your applications working correctly. The strong type system

ensures that data exchange follows the correct contract, and unexpected data will not

cause unexpected results. The lifetime and ownership systems permit you to share

memory directly across Foreign Function Interface (FFI) boundaries without ques-

tions of where the responsibility for freeing resources lies. The strong guarantees

around thread safety allow you to add parallelism that would have previously been

impossible or highly risky. When you combine these features, which were initially

https://rust-lang.org
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designed to help developers write better Rust programs, you will see that they are

ideal for aiding in incremental refactoring of almost any language into Rust.

1.4 Should you refactor to Rust?

There are a variety of reasons that you may want to refactor parts of your application

into Rust, but the two primary goals that we will discuss in this book are performance

and memory safety.

1.4.1 Performance

Let’s imagine that you’re working on an application written in a language like Python,

Node.js, or Ruby. You’ve been adding new features to your application for a while, and

you have a large codebase. However, as your user base grows, you have started to

notice that you’re paying a lot to scale your service with the required compute

resources. Your application is being slowed down by some part of the request han-

dling, but you’re not quite sure where yet.

 This book will guide you through techniques, like benchmarking and profiling,

that will lead you to the places in your code that will benefit the most from a perfor-

mance-oriented refactoring. Once we find these places, we will explore techniques to

implement the same functionality in Rust, along with some performance tuning that

can make your code as fast as possible.

 Let’s look at a small example. Imagine that the CSV-parsing code in the following

listing is in your web application.

def sum_csv_column(data, column):
sum = 0

for line in data.split("\n"):
if len(line) == 0:

continue

value_str = line.split(",")[column]
sum += int(value_str)

return sum

This Python function is fairly trivial; it returns the sum of all values from a given col-

umn in a CSV string. Writing the same function in Rust looks very similar.

fn sum_csv_column(data: &str, column: usize) -> i64 {
let mut sum = 0;

for line in data.lines() {
if line.len() == 0 {

Listing 1.1 Python function: The sum of values from a column in a CSV string

Listing 1.2 The same CSV column summing function written in Rust

Functions in Rust always
have their parameter

and return types
explicitly labeled.

The mut keyword indicates
that a variable is mutable and

its value can change over time.
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continue;
}

let value_str = line
.split(",")
.nth(column)
.unwrap();

sum += value_str.parse::<i64>().unwrap();
}

sum
}

The Rust version of the function may look slightly more intimidating at first, but it is

quite similar to the Python version:

 Both functions take two variables: a string of CSV and a column number to sum.

The Rust version has explicitly labeled types, but the Python version still expects

variables to have those types too, even if they’re not labeled.

 Both functions return numbers; once again, Rust explicitly labels these at the

top of the function declaration, while Python does not.

 Both functions raise errors if the data they are given does not match expecta-

tions. The Python version raises exceptions, and the Rust version panics (for

more on error handling, see chapter 2).

 Both functions use the same naive CSV parsing algorithm to accomplish their

goals.

Despite their similar appearance, these two functions have quite different perfor-

mance characteristics. The Python version will allocate a list of strings containing each

line in the CSV input string, put those strings in a list, and allocate a new list of strings

for each row of comma-separated values in the data. Because of the strong guarantees

that the Rust compiler can make about when memory is allocated and deallocated,

the Rust version safely uses the same underlying string memory for the whole func-

tion, never allocating. Additionally, Rust’s .split function on strings creates an Iter-

ator, not a list. Consequently, the whole sequence of substrings is moved over one at a

time instead of allocating the whole thing up front as the Python version does. This

distinction is discussed in more detail in chapter 3. If the input data is many millions

of lines long or has many fields, it will have a huge effect on performance.

 We ran both of these examples with the same input file of 1 million rows and 100

columns. Table 1.1 highlights their respective time and maximum memory usage.

Table 1.1 Performance differences between Python and Rust CSV aggregation functions

Version Run time Max memory used

Python 2.9 s 800 MiB

Rust 146 ms 350 MiB

The unwrap function at the end of these lines 
indicates that the functions used could possibly 
fail, and we’re just going to panic if they do.

This syntax (::<i64>) is called the “turbofish” operator in Rust; it is used
when the compiler needs a hint about what type a function should return.
Since the parse function can return different types depending on context,

it is required for disambiguation (for more information, see chapter 3).
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The Rust version represents a speedup of approximately 20 times, and it uses less than

half the memory. These are significant performance gains without a significant

increase in the complexity of the code. We cherry-picked this example; Rust may per-

form better or worse in your use case.

1.4.2 Memory safety

Alternatively, you may be working on a C or C++ project and want to utilize Rust for

the benefits in safety that it provides over those languages. At compile time, Rust can

verify that your application is safe from memory bugs like data races, dangling point-

ers, and more. By incrementally refactoring the critical parts of your codebase into

Rust, you can ship software more quickly with less time spent worrying about the

memory invariants of your code. Let the compiler do the worrying for you!

 Many common bugs in C and C++ code are simply impossible to express in normal

Rust code. If we try to write code that exhibits these bugs, the compiler will not accept

the program because the Rust compiler manages one of the most difficult parts of

programming in C and C++— memory ownership.

NOTE Experienced C++ developers may wonder about developing with
frameworks, like the popular Boost C++ framework. These kinds of library
ecosystems do not exist in Rust in the same way that they do in C++, as most
crates interface using standard library types and are compatible with one
another.

Experienced C and C++ programmers will probably be familiar with the concept of

memory ownership, but all these developers have to deal with it eventually. It will be

discussed in more detail in later chapters, but the bottom line is that one handle

always controls when a piece of memory is allocated and deallocated, and this handle

is said to “own” that memory. In a typical C or C++ program, the programmer is totally

responsible for maintaining the state of memory ownership in their heads. The lan-

guages provide very few tools to annotate what values are owned by what handles. The

Rust compiler, on the other hand, requires that programs adhere strictly to its mem-

ory ownership model.

 Memory ownership is one of the largest benefits of Rust development. Rust takes

errors that were traditionally run-time errors with unpredictable or dangerous conse-

quences and turning them into compile-time errors that can be resolved before the

code is ever executed.

1.4.3 Maintainability

When projects written in dynamically typed programming languages start to reach

into the tens of thousands of lines, you may find yourself asking questions like “What

is this object?” and “What properties are available?” Rust aims to solve these questions

about strong, static type systems. Static typing means that the type of every single value

in your Rust program is known at compile time. Static typing is coming back in a big

way these days. Projects like Typescript, Mypy, and Sorbet add type checking to
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JavaScript, Python, and Ruby, respectively. These programming languages never had

support for type checking, and the amount of effort that has gone into developing

these systems highlights how helpful it is to know a value’s type ahead of time.

 The type system in Rust is very powerful, but in most cases, it stays out of your way.

Functions must have their input and output types annotated explicitly, but the types of

variables inside of functions can usually be determined statically by the compiler with-

out any extra annotations. Just because the types are not labeled explicitly does not

mean that they are not known. If a function is declared to only accept a Boolean as its

input, you cannot give it a string. Many IDEs and editor plugins exist that can show

you these implicitly defined types to aid in development, but you, as a developer, don’t

need to write them yourself. Some developers may be nervous about static typing, hav-

ing last seen it when Java required you to use the following Kafkaesque syntax.

HashMap<Integer, ArrayList<Integer>> map
= new HashMap<Integer, ArrayList<Integer>>();

ArrayList<Integer> list = new ArrayList<Integer>();
list.add(4);
list.add(10);

map.put(1, list);

Specifying the type of every single local variable in each function is exhausting, espe-

cially when the language requires you to do it more than once. The same operation in

Rust takes only two lines, with no explicit types required.

let mut map = HashMap::new();
map.insert(1, vec![4, 10]);

How does the compiler know what type of values go into map? It looks at the call to

insert and sees that it is passed an integer as the key and a list of integers as the value.

The same code can be written with explicit type annotations in Rust, but it is com-

pletely optional in most cases. We will cover some of these cases in chapter 2.

let mut map: HashMap<i32, Vec<i32>> = HashMap::new();
map.insert(1, vec![4, 10]);

This strong type system ensures that when you revisit the code later, you can spend

more time adding new features or improving performance and less time worrying

about what the fifth untyped parameter to the perform_action function means.

Listing 1.3 Initializing a map of numbers to lists of numbers in Java 1.6

Listing 1.4 Initializing a map of numbers to lists of numbers in Rust

Listing 1.5 Initializing a map of numbers to lists of numbers in Rust with explicit types
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1.5 When not to refactor to Rust

If you are looking at a greenfield project, you don’t need to refactor it to Rust; you can

write your initial solution in Rust! This book primarily assumes that you have an exist-

ing software project that you want to improve. If you’re just starting out, you may ben-

efit more from a general-purpose Rust programming book. Also, if your project is

running in an environment that you don’t have very strong control over, such as a

PHP shared hosting service or tightly controlled enterprise servers where you don’t

have the ability to install new software, you may run into problems with some of the

techniques outlined in this book. 

 A plan is always necessary when deploying any software project. How are you going

to get it in front of users? The type of refactoring discussed in this book assumes that

deploying new code is fairly low cost and can be done frequently. If you need to ship

physical media to customers for new versions or your organization has a very rigid

release structure, this book may not fit your needs.

 When writing new software, you should always plan for how it will be maintained

for years to come. If you are the only one excited about Rust development in your

large company, you may be setting yourself up to be “the Rust person” for when this

system inevitably has problems down the line. Do you want to be the only one respon-

sible for maintaining this system?

1.6 How does it work?

Incremental refactoring of a mature production system is no simple task, but it can be

broken down into a series of a few key steps:

1 Planning

 What do I hope to improve by refactoring to Rust?

– If existing code is written in C or C++, you should be thinking of how Rust

can improve the memory safety of your application.

– If existing code is written in an interpreted, garbage-collected language

like Python, you will be mostly concerned with improving the perfor-

mance of your application.

 What parts of my code should be refactored?

 How should my existing code talk to the new code?

2 Implementation

 Mirroring the functionality of existing code in new Rust code.

 Integrating Rust code into the existing codebase.

3 Verification

 Using testing facilities of the Rust language to test new functionality.

 Using your existing tests to compare results between the two code paths.

4 Deployment

 Depending on the decisions you made earlier, there are different ways that

your Rust code will need to be run when it is serving your customers.
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 How can you effectively roll out your refactored code without affecting your

end users?

Figure 1.2 lists these steps and some of their finer parts in more detail.

Figure 1.2 Overview of the refactoring process that we discuss in this book
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As you can see from figure 1.2, the largest part of this process is planning. Performing

this type of refactoring work is complex, and it requires you to know the effects of

replacing code before that code is replaced. You must also carefully consider the per-

formance and maintainability that comes with introducing new code patterns. After

planning, the largest section is deployment, where you control which users access the

new functionality instead of the old. 

1.7 What will you learn in this book?

This book covers incremental refactoring in an abstract sense and then moves into

how Rust can specifically help an incremental refactoring approach and how it can be

incorporated into your applications. There are two main techniques for integrating

Rust code into existing applications, and each has a few variations.

1.7.1 Calling Rust functions directly from your program

In this model, you write a Rust library that acts like a library written in your existing pro-

gramming language. The various techniques are discussed at a high level in this section

and will be discussed at length in later chapters. Figure 1.3 illustrates this model.

Figure 1.3 When calling Rust directly from your existing application, your Rust code looks like a normal 

module.

If you’re refactoring a Python project, for instance, your Rust library will expose func-

tions and classes that act like Python functions and classes. This method will have the

lowest possible overhead for communication between your existing code and the new

Rust code since they are both running as a part of the same OS process and can

directly share memory with each other.

 There are a few branches of this approach:

 Using the C FFI

– This topic is discussed at great length in chapter 3, but the bottom line is that

Rust will let you write a function that looks like a C function, and many other

languages know how to call C functions.

Python application
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– This approach is the most universal since most commonly used program-

ming languages understand C FFI.

– This approach has the most potential for memory bugs, as the programmer

will be directly responsible for ensuring that memory is allocated, deallo-

cated, and passed back and forth correctly, and ownership is always clear.

– If your projects are in C or C++, you will use this integration technique.

 Using Rust libraries to bind directly to the other language’s interpreter

– Using this technique, you can write a Rust library that looks just like a

Python, Ruby, or Node.js library, for instance.

– This technique, which is often easier to implement than the C FFI approach,

breaks down if no Rust bindings are available for the language that you want

to use.

 Compiling Rust to WebAssembly (WASM) and using WASM FFI

– WASM is a bytecode format for JavaScript engines, similar to Java bytecode.

Many languages (Rust included) can compile to WASM instead of native

machine code.

– This approach is useful when using Rust with in-browser JavaScript engines

or Node.js.

1.7.2 Communicating with a Rust service over the network

This technique relies on using a network protocol to communicate with a newly cre-

ated Rust service. Figure 1.4 illustrates this concept.

 This approach has several advantages and disadvantages compared with the previ-

ously discussed model:

 Advantages

– Because this technique has no direct access to memory, you don’t run the

risk of memory corruption in the interop between the two languages.
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Figure 1.4 When Rust code is in an external service, there is additional overhead due to the network hop.
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– This approach allows your Rust system to be scaled independently of your

existing application.

– More developers have experience with networked communication between

applications, so it is less of a conceptual jump than the idea of multiple pro-

gramming languages coexisting in one application.

 Disadvantages

– As alluded to in the last section, you will lose out on some performance due

to the extra time it takes for data to be sent across the network.

– There is additional operational overhead for adding an extra service with its

own independent logging, monitoring, and deployment logic.

1.8 Who is this book for?

This book is written for programmers who already have several years of experience

working with applications in a language other than Rust and are looking for ways to

improve their applications’ performance, safety, or maintainability.

 This book will also benefit Rust programmers who want to apply their knowledge

to help improve the performance or memory safety of existing applications written in

other languages. There’s a lot more code out there that isn’t written in Rust than

there is code written in Rust.

 The code examples will, of course, mainly be Rust, but since this book covers mov-

ing from other languages to Rust, we need something to compare to. Chapter 3 has

many C and C++ code examples, and many of the remaining chapters have code

examples in Python to highlight the differences between it and Rust and show how

the integration methods work. You do not need to be an expert in these languages;

experience with other procedural languages in the C family should suffice.

 Chapter 3 discusses many topics around memory safety that may be foreign to

developers that primarily work in languages that have run-time garbage collection.

These topics are not required for refactoring from these garbage-collected languages;

they are mainly for the benefit of the readers coming from a C and C++ background.

1.9 What tools do you need to get started?

All of the software tools that you need to get started are readily and freely available.

You will need

 A recent Rust compiler—Instructions for installing Rust can be found at https://

www.rust-lang.org/tools/install.

 A text editor suitable for programming

 A computer or virtual machine running a GNU/Linux operating system—Most strictly

Rust programming examples in this book will work on any operating system,

but some of the examples are written assuming a GNU/Linux operating system:

– If you are using Microsoft Windows, the Windows Subsystem for Linux

(WSL) provides a convenient way to run Linux programs that integrate with

your normal Windows environment.

https://www.rust-lang.org/tools/install
https://www.rust-lang.org/tools/install
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– All examples in the book are tested on Ubuntu 20.04 running under WSL.

 Libclang development packages—Again, this is not strictly required for the Rust-

only coding exercises, but many of the chapters use Libclang (indirectly) to

generate code to talk between Rust and C/C++ code.

 Python 3, virtualenv, and pip—These are required to run the Rust-based

Python extension modules in later chapters.

Summary

 Refactoring can be used to replace small parts of your code at a time. Making

smaller changes more often can help improve performance without the pain

and time investment of a large rewrite.

 Rust has a strong static type system that ensures inputs and outputs are clearly

defined and edge cases are handled.

 Rust provides easy parallelism, meaning you can take already fast Rust code and

use every bit of available CPU power to maximize performance.

 Rust can easily integrate with other languages and allows you to focus on deliv-

ering value without worrying about reinventing the wheel.

 Refactoring to Rust can improve performance, memory safety, and maintain-

ability, which can help your software systems scale faster and with less expense

in the long term.
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An overview of Rust

Before we can integrate a Rust library into an existing application written in

another language, we first need to understand the basics of Rust programming.

This chapter guides us through a simple application to manage digital artworks for

an art museum and teaches us about how the ownership system works. Ownership

and borrowing are considered by many to be some of the most challenging things

for new Rust developers to learn. We’re starting with them here instead of some-

thing simpler because these are the areas where Rust differs most from other pro-

gramming languages, and they’re at the core of all Rust programs. If we don’t take

the time to cover these important ideas now, it will make the rest of the book far

more difficult. We’re going to use an example that ties the ownership and

This chapter covers 

 Designing systems that properly utilize Rust’s 

ownership system

 Visualizing Rust’s lifetime system to aid in debugging

 Controlling allocations of strings for fast 

performance

 Enums and basic error handling
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borrowing components of Rust programs to ownership and use of digital artwork.

This process should make reasoning about ownership easier, and we’ll introduce tools

for visualizing changes to ownership over time.

2.1 Ownership and borrowing

One of the biggest differences between Rust and other programming languages is the

enforcement of a few very important rules about how data can be accessed and depen-

dencies between different forms of data access. These rules are not overly compli-

cated, but they are different from many other languages, which have no enforcement

of such rules. The rules for ownership are as follows:

 Each value in Rust has a variable that’s called its owner.

 There can only be one owner at a time.

 If the owner goes out of scope, the value is dropped.

When looking at Rust code for the first time, it may not be obvious that these rules are

being followed. Procedural Rust code can look very similar to code written in other lan-

guages, and you may be able to follow along without any problems. However, you may

find that when trying to edit existing Rust code or write your own, you have difficulty

getting code that seems perfectly reasonable to compile. This difficulty is because the

Rust compiler is enforcing these rules, which you have not fully internalized yet.

 We will walk through a simple example problem to showcase how the ownership

and borrowing rules can affect a Rust program. Let’s imagine that you’re approached

by an art museum; they want you to design a system in Rust that allows them to man-

age their catalog of artwork digitally. The system should allow patrons to purchase

tickets that give them the right to view works.

 We’ll start out by creating a new Rust project using Rust’s package manager, Cargo.

To start a new project with Cargo, we use the command cargo new, followed by the

name of the project that we want to create: 

$ cargo new art-museum

This code creates a new directory called art-museum; it has all the files we need to get

started writing Rust. For now, we’ll focus on the main Rust code file that is generated,

art-museum/src/main.rs. Open that file in your favorite text editor, and we can get

started.

 When you first open the file, you may be surprised to find that it’s not empty, and,

in fact, it already contains what is perhaps the most famous of all programming exam-

ple problems, the “Hello world!” program.

fn main() {
println!("Hello world!");

}

Listing 2.1 The "Hello world!" program in Rust

Most Rust programs have a main function as 
their entry point. All Rust function 
definitions contain the fn keyword, followed 
by the name of the function being defined.

The ! after println is an indication that
this is a macro, not a function.
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We can run this program to verify that it prints out what we expect by using another

Cargo command; cargo run. The run command instructs Cargo to compile our Rust

application and run the resulting executable. cargo run will be one of our most fre-

quently used commands:

$ cargo run
Hello world!

Let’s replace the code in the “Hello world!” program with the beginnings of our art

museum code. We’ll start by defining a type that represents artwork in the museum.

struct Artwork {
name: String,

}

fn main() {
let art1 = Artwork {

name: "Boy with Apple".to_string()
};

}

Structs are collections of fields that represent single logical values. Rust structs are

similar to classes in object-oriented programming languages, but they do not support

inheritance as classes do. They are more similar to structs in languages like C++ or Go,

as they allow developers to combine data with functionality.

 When initializing a new variable in Rust, we use the let statement. The compiler is

able to infer the type of the variable that we’re creating based on the value on the

right-hand side of the equals sign. 

 It may appear odd that "Boy with Apple" is not good enough to be a string on its

own and requires the extra function call to be considered a String; we discuss this sit-

uation in more detail in section 2.3. For now, know that calling to_string() is

required to turn a string literal into a String. The first operation that we might want

to model is viewing a piece of art.

struct Artwork {
name: String,

}

fn admire_art(art: Artwork) {
println!("Wow, {} really makes you think.", art.name);

}

fn main() {
let art1 = Artwork { name: "La Trahison des images".to_string() };
admire_art(art1);

}

Listing 2.2 Struct representing an artwork

Listing 2.3 Allowing our art to be admired
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The curly braces in the string literal passed to the println! macro will be substituted

with the values given after the initial string argument. This process is similar to the for-

mat string style substitutions that languages like C and Go make available in the

printf function and languages like Python provide in the .format method on strings. 

 We now have a function called admire_art that accepts a single Artwork as its only

argument and prints a message about how fantastic the art is. This program should

print the following:

$ cargo run
Wow, La Trahison des images really makes you think.

So far, this system seems pretty great: we have art, and we have quiet admiration. Both

are key elements in any art museum. Since we’re not running the world’s smallest art

museum, let’s add in a second work of art!

struct Artwork {
name: String,

}

fn admire_art(art: Artwork) {
println!("Wow, {} really makes you think.", art.name);

}

fn main() {
let art1 = Artwork { name: "Las dos Fridas".to_string() };
let art2 = Artwork { name: "The Persistence of Memory".to_string() };

admire_art(art1);
admire_art(art2);

}

This program should have very unsurprising output for everyone following along:

$ cargo run
Wow, Las dos Fridas really makes you think.
Wow, The Persistence of Memory really makes you think.

Now, admiring two pieces of art is all well and good, but let’s imagine that this

museum has multiple patrons who want to look at the same piece of art. Listing 2.5

shows what this code might look like.

struct Artwork {
name: String,

}

fn admire_art(art: Artwork) {
println!("Wow, {} really makes you think.", art.name);

}

Listing 2.4 A program where two pieces of art can be admired

Listing 2.5 A program attempting to admire the same art twice
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fn main() {
let art1 = Artwork { name: "The Ordeal of Owain".to_string() };

admire_art(art1);
admire_art(art1);

}

If we try to run this seemingly reasonable program, we’ll get a compiler error—a com-

piler error that will probably look quite foreign to those who have not developed in

Rust before. Let’s take a look at it:

$ cargo run
error[E0382]: use of moved value: `art1`

--> src/main.rs:11:16
|

8 | let art1 = Artwork {};
| ---- move occurs because `art1` has type `Artwork`, which
| does not implement the `Copy` trait

9 |
10 | admire_art(art1);

| ---- value moved here
11 | admire_art(art1);

| ^^^^ value used here after move

error: aborting due to previous error; 1 warning emitted

What’s going on here? What does use of moved value mean? What is the Copy trait?

What is Rust trying to tell us?

 The Rust compiler is trying to tell us that we have violated the ownership rules and,

therefore, our program is invalid. But before we can discuss the reasons why this code

doesn’t work in Rust, we need to take a brief detour to look at how memory is man-

aged in other programming languages. 

2.2 Memory management in other languages

Generally, computer programs store the data that they use or generate at run time in

the computer’s memory. Memory is usually divided into two parts: the stack and the

heap. 

 The stack is used to store local variables created inside the currently running func-

tion and the functions that led to the current function being called. It has a small limit

on its maximum size, often 8 MB. It always grows like a stack of papers, meaning when-

ever values are added or removed, they are added or removed from the top. As a

result, the stack does not have gaps.

 The heap, on the other hand, is only limited by the memory size of the computer

on which the program is running, which may be gigabytes or terabytes. Consequently,

the heap is used to store much larger data or data where the exact size is not known

before the program runs. Things like arrays and strings are commonly stored on the

heap. Memory associated with the heap is also referred to as dynamic memory because

the size of the values on the heap will not be known until the program is running. 
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 Let’s imagine that we want to welcome a patron when they enter our art museum

by saying “Welcome {name}.” To do so, we need to first request that the computer set

aside enough space in memory to store a patron’s name, which we store in the vari-

able name. This process is called allocation. Nothing else can be stored in that area of

memory other than this patron’s name value. We can replace or alter the value in

memory by assigning a new value to name, but name will still always refer to the same

area in memory. 

 We need to clean up the memory of our program periodically, or it will eventually

fill with name values that we’re not using. When we’re no longer using name, after we’ve

successfully printed our welcome message, we need to tell the computer that it’s OK to

reuse the memory that was associated with name for other purposes because we’re not

using it anymore. Rust refers to this clean-up process as drop-ing a value, but the more

generic term is deallocation. In the past, there have been two common ways different

programming languages allowed developers to allocate and deallocate memory:

 The developer can write code that explicitly requests the amount of memory

required and marks the point at which the memory is no longer used and can

be cleaned up. This process is called manual memory management because it

requires manual effort by the developer to ensure that memory is allocated and

deallocated when appropriate. Many languages with manual memory manage-

ment automatically deallocate values from the program’s stack memory when

the function that allocated it returns, and the stack frame exits. The larger con-

cern with these languages is the management of heap memory. 

 The language can have extra code that runs in the background of all programs

to periodically check to see when no variables are left that refer to allocated

blocks of memory and deallocate them. This process is called garbage collection

or automated memory management, because there is no manual step required from

the developer to deallocate memory. These languages generally also have much

simpler methods for performing allocation, preventing the developer from ask-

ing for too much or too little memory to store a value of a given type. 

If you are interested in writing very high-performance programs, you are generally

stuck using languages that provided manual memory management tools to the devel-

oper. Languages like C and C++ require the programmer to figure out how much

memory is required and ask the computer to allocate exactly that amount of memory.

Asking for too much can result in slow allocation times or overly high memory use.

Asking for too little and erroneously using memory outside of your allocated block

can cause massive problems. These problems can lead to things like programs crash-

ing, exposing areas of memory that should be secret (think passwords, encryption

keys, etc.), or allowing malicious users to inject code into your running program and

hijack it. Trying to write a large program in a language that requires the developer to

manage memory manually requires a lot of mental effort on the part of the

developer—or at least a lot of documentation.
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 One of the most common problems that occurs with manual memory management

is the idea of “use after free,” which is what happens when you try to use an area of mem-

ory after it’s been deallocated. It may have been repurposed to hold something else, it

may have been zeroed, or it may still contain the data that you think it does. It’s com-

pletely up to the compiler to do whatever it wants to do with deallocated memory.

 Let’s imagine that you want to write a simple program using an imaginary pro-

gramming language, which we’ll call “K.” The K programming language is very similar

to the Python programming language, with the exception that K requires the devel-

oper to explicitly deallocate dynamic memory by calling the free function on values.

You must call free on every value allocated in dynamic memory, and you must call it

exactly one time. If you attempt to use a freed value, your program will crash. Let’s try

to write our welcoming program using K. 

def welcome(name):
print('Welcome ' + name)

name = input('Please enter your name: ')
welcome(name)
free(name)

This code asks a user for their name, gives them a personalized welcome message, and

then deallocates the memory used to store their name. This program is perfectly fine,

you think to yourself, but most of the time when you’re calling welcome, don’t you

need to free the string on the next line anyway? Let’s move the call to free inside of

the welcome function so we don’t need to remember to call it. 

def welcome(name):
print('Welcome ' + name)
free(name)

name = input('Please enter your name: ')
welcome(name)

Moving the call to free inside of the welcome function saves us from needing to

remember to call free each time welcome is called. It’s quite obvious in this small

example that the program is still valid, but we created a subtle undocumented behav-

ior of the welcome function. Any string given to the welcome function is now unusable

after it’s called. If we have 10,000 lines of code, we now need to inspect each call to the

welcome function to ensure that strings passed to it are never reused, or we risk crash-

ing our program. 

 If we updated the welcome logic to keep a log of the patrons who entered the

museum from a specific entrance, we would need to change the welcome function to

once again not deallocate the strings passed to it. This process again requires us to

Listing 2.6 The welcome program written with K

Listing 2.7 The welcome program with deallocation inside the welcome function
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examine the codebase, look at all calls to welcome, and determine if the name should

be deallocated immediately after or put onto the log. The programmer must make all

these decisions before the program runs, but the K language provides no tools to ver-

ify that the program is correct other than by running it. 

 Here, we can start to see the benefits of Rust’s ownership system. With Rust, we

have encoded at the type level information about when memory is allocated, when it is

valid to use, and when it is deallocated. Knowing this information protects us from use

after free errors and many other classes of memory corruption errors. They’re simply

not possible to express in Rust. The compiler will stop our programs from ever run-

ning if they violate the rules of Rust.

 We can also see that Rust programs have a bit of the best of both worlds of garbage

collection and manual memory management. We have the speed of manual memory

management because no extra process is running in the background to scan memory

in the Rust program, and we can rest easy knowing that the compiler will protect us

from making memory errors that will cause our program to crash or worse.

 Recall the code in listing 2.5. It is repeated here.

struct Artwork {

name: String,

}

fn admire_art(art: Artwork) {

println!("Wow, {} really makes you think.", art.name);

}

fn main() {

let art1 = Artwork { name: "The Ordeal of Owain".to_string() };

admire_art(art1);

admire_art(art1);

}

When we defined our admire_art function, we told Rust that to call the function, the

caller would need to provide an owned value of type Artwork to the function and that

the function would take ownership of the value. Remember, in all Rust programs,

each value can only ever have a single owner. Since our variable art1 owns the Art-

work value that it refers to, when we call admire_art with art1 as the parameter, Rust

removes the ownership of the value from art1, and moves the ownership of the art-

work to the art variable inside of our admire_art function. This step is very import-

ant: after the initial call to admire_art, the art1 variable is no longer valid because it

no longer refers to anything and thus cannot be used. When we call the admire_art

function with any Artwork, the memory associated with that artwork is deallocated at

the time that the function completes. 

Listing 2.8 Repeating the code in listing 2.5
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 Understanding ownership and movement is critical in writing Rust code, but

equally important is the understanding of lifetimes. 

2.3 Lifetimes

The concept of lifetimes in Rust is at the core of understanding the memory manage-

ment process. All values in all programming languages have lifetimes, although most

are not as explicit about it as Rust. The lifetime of a value describes the period of time

when that value is valid. If it’s a local variable in a function, its lifetime might be the time

that the function is being called. If it’s a global variable, it might live for the entire run

time of the program. A value is valid in the time after its memory is allocated and before

it is dropped. Trying to use a value at any time outside of this range is invalid. In lan-

guages like C and C++, using a value outside its lifetime may result in crashes or memory

corruption errors. In Rust, it results in your program not compiling. 

 To aid in understanding, let’s introduce a new type of visualization that we’ll call

the “lifetime graph.” These graphs appear frequently in this chapter and periodically

throughout this book. Before we try to visualize the error from listing 2.5, let’s first

look at a simpler example from earlier in the chapter. Figure 2.1 shows the lifetime

graph for listing 2.2; the code is included for convenience. 

Figure 2.1 The lifetime graph for listing 2.2

Notice that the art1 variable has a single line that shows when the variable is created,

when it is usable, and when it is destroyed. In Rust, values are dropped when they go

This box represents all of the
variables that are created and
used when the main function
is called.

The point where we request that
the computer set aside memory
to store the value for the art1
variable

The lifetime of the art1 variable.
For every variable in a Rust
program, we should be able to
draw a line like this that shows
when the value is created, when it
is valid, and when it is destroyed.

The point just before the main
function ends, when the memory
holding the art1 variable is
dropped

mainmain

art1

struct Artwork {
    name: String,
}

fn main() {
    let art1 = Artwork {
        name: "Boy with Apple".to_string()
    };
}
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out of scope. Local variables in a function are dropped just before the function ends.

When we’re having difficulty sorting out problems with Rust’s memory management

system, we rely on these graphs to help understand what’s going on. 

 Now, let’s take a look at what the lifetime looks like for listing 2.3.

Figure 2.2 The lifetime graph for listing 2.3

Figure 2.2 introduces the concept of “move”-ing a value or transferring its ownership

to another variable. As we know from the discussion of listing 2.3, when we call the

admire_art function with our art1 parameter, it is “move”-d out of the main function

and into the admire_art function. It is then no longer accessible from the main func-

tion. The disappearance of the lifetime for the art1 variable from the main function

as soon as the admire_art function runs is our hint that it has been moved.

 If we visualize the code in listing 2.4, we see what it looks like for two variables to

coexist, with their own independent lifetimes.

 We can see in figure 2.3 that each of the two Artwork variables is created in the

main function and then moved into different call sites of the admire_art function.

Each variable has its own independent lifetime, and each has an appropriate start,

middle, and end. 

This box represents all of the
variables created and used
when the admire_art
function is called; notice that
it appears within the block
for main.

Notice that the drop symbol
is no longer in the main
function. Because we
transferred ownership of
art1 into the admire_art 
function, main is no longer
responsible for dropping it.

main

admire_art

A “move,” when ownership
of a value is transferred from
one variable to another. In this
case, ownership is moved from
the art1 variable in the main
function, into the art variable
in the admire_art function.

art1

art

struct Artwork {
  name: String,
}

fn admire_art(art: Artwork) {
  println!(
    "Wow, {} really makes you think.",
    art.name,
  );
}

fn main() {
  let art1 = Artwork {
    name:
      "La Trahison des images"
      .to_string(),
  };
  admire_art(art1);
}
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Figure 2.3 The lifetime graph for listing 2.4

When we try to construct a lifetime for listing 2.5, we begin to run into some prob-

lems. Let’s see whether we can gain any insights into what’s happening by looking at

that visualization in figure 2.4.

 

Figure 2.4 The lifetime graph in listing 2.5

main

admire_art

admire_art

art1

art2

art

art

struct Artwork {
    name: String,
}

fn admire_art(art: Artwork) {
    println!(
        "Wow, {} really makes you think.",
        art.name
    );
}

fn main() {
    let art1 = Artwork {
        name: "Las dos Fridas".to_string()
    };
    let art2 = Artwork {
        name: "The Persistence of Memory".to_string(),
    };

    admire_art(art1);
    admire_art(art2);
}

main

admire_art

admire_art
When we try to call
admire_art(art1)the
second time, art1 has already
been moved out of the main
function and dropped. There
is no value left in art1 to use!

??

art1

art

art

struct Artwork {
  name: String,
}

fn admire_art(art: Artwork) {
  println!(
    "Wow, {} really makes you think.",
     art.name,
  );
}

fn main() {
  let art1 = Artwork {
    name:
      "The Ordeal of Owain"
      .to_string(),
  };

  admire_art(art1);
  admire_art(art1);
}
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Let’s dissect what’s happening. Notice that art1 is moved into the admire_art func-

tion and is no longer reachable from the main function. When we try to call

admire_art a second time, the value is gone; there’s nothing there, which is what the

error message Rust provided is trying to tell us. Remember that the headline of that

error message is use of moved value. In the code, art1 has moved out of the main

function, but we tried to use it from the main function. In other words, we’re trying to

use a value after it’s been moved, making it invalid. 

 At this point, you may be asking yourself, “So what? Why should values basically dis-

appear when I pass them to a function? This seems like a waste of time to keep track

of!” It may seem like an extra burden Rust places on the programmer just to make our

lives more difficult, but the truth is that programmers using languages with manual

memory management like C or C++ need to follow rules like this constantly. The only

difference is that the compiler doesn’t enforce the rules; it’s up to the programmer to

remember to follow them!

 Let’s briefly discuss how we can write functions that don’t take ownership of the

values they use.

2.3.1 References and borrowing

Unless you’re writing a program that only uses every piece of data a single time, you’ll

find passing values by moving them to be extremely constraining. At some point, you

will want to use the same value from multiple places or use a value without transfer-

ring its ownership. In Rust, you can borrow values instead of owning them. Borrowing a

value in Rust always results in having a reference to the thing you are borrowing. Refer-

ences can be thought of as values that tell Rust how to find other values. If you imag-

ine your computer memory as an enormous array of values, references are like indices

in that array that allow you to find values within it. 

 Borrowing a value in Rust is much like borrowing a physical object in real life.

Since we don’t own the value we’re using, we don’t get to destroy it when we’re fin-

ished with it. We may use it temporarily, but we always need to return it to the owner

before the owner is destroyed. Borrowing comes with some rules. Like with owner-

ship, these rules define the way that data moves through a Rust program, and they will

eventually become second nature to you. Let’s take a look at them:

 Each value may have either exactly one mutable reference or any number of

immutable references at any time.

 References must always be valid.

The first rule may seem a bit odd to developers coming from languages that do not

have a concept of controlled mutability. We discuss this concept in more detail in sec-

tion 2.2.2, but first let’s take a look at how references work more generally by applying

them to our art program in listing 2.5. Recall that in that listing, we attempted to pass

a variable to the same function multiple times but had difficulty because passing the
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variable moved it out of the main function. If we change the signature of the

admire_art function from that example to take a reference to an artwork instead of

the owned artwork, it works the way we expect. 

struct Artwork {

name: String,

}

fn admire_art(art: &Artwork) {

println!("Wow, {} really makes you think.", art.name);

}

fn main() {

let art1 = Artwork { name: "The Ordeal of Owain".to_string() };

admire_art(&art1);

admire_art(&art1);

}

Listing 2.9 looks very similar to listing 2.5. The only difference is a change to the type

that admire_art accepts. Instead of requiring an owned Artwork to be passed to it,

admire_art now accepts a reference to an Artwork. If we think about this from the

perspective of the museum, it makes sense. We don’t want to be creating and destroy-

ing artwork just so it can be admired one time; we want to be able to share the admira-

tion of artwork with many people at many times. It also makes sense from a memory

perspective: thrashing memory by creating and destroying values constantly is ineffi-

cient. It’s much better to reuse memory when possible. If we compare the lifetime

graph for listing 2.9, it’s immediately apparent that it makes more sense. Let’s look at

the lifetime graph for this example to see how we can represent immutable borrows

like this.

 In figure 2.5, we can see that art1 is no longer moved into either of the calls to

admire_art. We pass in a reference, but art1 remains owned by the main function.

The memory associated with art1 is not deallocated until the end of main, and since

the references to it are dropped when their function calls end, that is perfectly fine. 

 So that we understand the difference between mutable and immutable references

in Rust, let’s take a look at the way that Rust handles mutable and immutable variables

differently. 

Listing 2.9 A program admiring the same art twice

Notice the use of the ampersand (&) on this 
line. When this symbol appears in a type 
declaration, like &Artwork, it means that the 
type referred to is a reference to the type 
following the ampersand. Consequently, the 
function admire_art will only work with a 
reference to an artwork, not an owned one. 

When the ampersand appears in an 
expression, it is called the “borrow operator.” 
As a result, the expression &x evaluates to a 
reference to whatever is in the expression x. 
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Figure 2.5 The lifetime graph for listing 2.9

2.3.2 Controlling mutability

All variables in Rust are tagged with a bit of extra information to help the developer

(and the Rust compiler) reason about how the program will behave at run time. This

information determines whether the variable is mutable, meaning it can be changed,

or immutable, meaning it cannot be changed. 

 All variables in Rust are immutable unless explicitly labeled as mutable when

they’re declared. The following listing shows what it looks like to declare and use an

immutable variable and a mutable variable.

fn main() {
let x = 0;
let mut y = 0;

println!("x={}, y={}", x, y);

y += 10;
println!("x={}, y={}", x, y);

}

Listing 2.10 Using immutable and mutable variables in Rust

art1

art

admire_art

admire_art

main

art

Notice that art1 is still dropped
in the main function, as we never
transferred ownership of it.

Where art1 is borrowed by
the admire_art function

The double lines indicate that
art1 is borrowed immutably
and can therefore not be
mutated here.

This symbol, the mirror of the
borrow operation, represents the
borrow ending. Notice that it
lines up with the point at which
the reference is dropped inside
of the admire_art function.

This art variable is in a dotted circle to indicate
that it is a reference, not an owned value. References
are themselves values, though, so it still has a lifetime
and is dropped, just like a normal value.

struct Artwork {
    name: String,
}

fn admire_art(art: &Artwork) {
    println!(
        "Wow, {} really makes you think.",
        art.name,
    );
}

fn main() {
    let art1 = Artwork {
        name:
            "The Ordeal of Owain"
            .to_string(),
    };

    admire_art(&art1);
    admire_art(&art1);
}

The x variable’s declaration has no annotation, meaning 
that it is immutable and cannot be changed.

The mut keyword here before the variable 
name tells the compiler that the y variable 
is mutable and can be changed.

Because we want to mutate the value stored 
in y, it must be declared as mutable. What 
happens if we change the y on this line to x?
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It may seem odd at first that Rust requires that you specify up front whether a value will

be changed later, but you will be surprised by how often mutations can be avoided in

most Rust code. In addition, the Rust compiler knows about mutations, which means

that it can statically verify some code that would otherwise be tricky to get right in other

languages. We’ll get into some more specifics in chapter 8, when discussing concurrent

Rust code. For now, know that this is a small change to the way you declare variables in

exchange for a big payout on your ability to reason about the code that you’re running.

 As we can see from listing 2.10, it’s very easy to mark a variable as mutable. Making

a variable mutable allows us to reassign its value. In an example this small, it may not

be obvious why it’s beneficial to have this control over mutability, but when we com-

bine it with references, the benefits should become very clear. Let’s return to our art

museum code and see whether we can use the concept of mutability.

 The current version of admire_art accepts an immutable reference, but what if we

wanted each artwork to have a view counter that is incremented each time it is admired?

In that case, we would need to edit the function to accept mutable references. 

struct Artwork {
view_count: i32,
name: String,

}

fn admire_art(art: &mut Artwork) {
println!("{} people have seen {} today!",

art.view_count, art.name);
art.view_count += 1;

}

fn main() {
let mut art1 = Artwork {

view_count: 0, name: "".to_string() };

admire_art(&mut art1);
admire_art(&mut art1);

}

In listing 2.11, it appears that we have achieved our goal of incrementing a number

and reading it each time that an artwork is viewed. “But wait!” you might be saying,

“I thought that there could only be one mutable reference to a value at any one time!

Doesn’t this program violate that rule?” If we take a moment to consider what hap-

pens in the program, we see that two mutable references never point to the same

value. Figure 2.6 illustrates this point.

 Notice the references we create have drop points after which they no longer exist.

When we call admire_art, we give it a reference, and when the function ends, that ref-

erence goes out of scope and is dropped. In the time between the two function calls,

there are zero references to art1. Consequently, our program is legal Rust.

Listing 2.11 Incrementing a view counter on an artwork using mutable references

The types changes from &Artwork to &mut 
Artwork, indicating that the artwork may 
be modified within this function.

This line requires a mutable 
reference. Since view_count is 
mutated here, we need a mutable 
reference to the owner of view_count, 
which is the Artwork that contains it.

Even though art1 is not mutated inside the 
main function, we create mutable references 
to it, which requires that we annotate the 
declaration with the mut keyword.

The expression to create a mutable reference 
also requires the addition of the mut keyword. 
&mut x creates a mutable reference to x.
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Figure 2.6 The lifetime graph for listing 2.11

Going back to the code in listing 2.9, we can see the value of the explicit mutable

annotations. We know by looking at the type declaration of the admire_art function

that it will not modify the Artwork value that is passed into it. Why? Because it accepts

an &Artwork, not an &mut Artwork. You can look at a function declaration from

library documentation and know, not guess, which functions will modify the values

given to them and which functions will only view the values they are given. This struc-

ture has large, overlapping implications for security, performance, and debugging

purposes. We’ll explore that more in chapter 3 during our discussion of integrating

Rust code with C and C++. 

2.3.3 References and lifetimes

Just like values have lifetimes in Rust, so do references. References point to values, but

they are also values themselves and are dropped when they go out of scope. In addi-

tion, references have an extra rule placed on them by Rust. Remember from our ini-

tial discussion of references that all references must be valid. What does that mean?

Simply put, all references must point to valid values. Also, recall that lifetimes are the

Rust compiler’s way of determining whether a value is valid or invalid. Thus, refer-

ences and lifetimes are very strongly tied together. Not only do references have life-

times, but they must also be concerned with the lifetimes of the values to which they

point. Let’s take a look at a concrete example. 

art1

art

art

admire_art

admire_art

main

Like immutable borrows,
the symbols here indicate
when the mutable borrow
starts and ends.

Remember that unlike
immutable borrows,
there can only be a single
mutable borrow at any
time. This line indicates
that the art1 variable
cannot be used until the
mutable borrow inside
admire_art finishes.

struct Artwork {

    view_count: i32,

    name: String,

}

fn admire_art(art: &mut Artwork) {

    println!(

        "{} people have seen {} today!",

        art.view_count,

        art.name,

    );

    art.view_count += 1;

}

fn main() {

    let mut art1 = Artwork {

        view_count: 0,

        name: "".to_string(),

    };

    admire_art(&mut art1);

    admire_art(&mut art1);

}
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struct Artwork {
name: String,

}

fn admire_art(art: Artwork) {
println!("Wow, {} really makes you think.", art.name);

}

fn main() {
let art1 = Artwork { name: "Man on Fire".to_string() };

let borrowed_art = &art1;

admire_art(art1);

println!("I really enjoy {}", borrowed_art.name);
}

When we try to run this code, we get a compiler error! Let’s try to construct a lifetime

graph and see where we went wrong.

Figure 2.7 The lifetime graph for listing 2.12

As we can see from figure 2.7, our program is invalid because the borrowed_art refer-

ence is invalidated after the admire_art function is called. Let’s look at another com-

mon pitfall of reference lifetimes. 

Listing 2.12 A program attempting to use a value after it’s been moved

admire_art was changed 
here to take an owned 
Artwork, not a reference.

borrowed_art is a 
reference to art1.

art1

admire_art

main

art

borrowed_art
Notice that art1 is moved
into the admire_art
function while it is still
borrowed. So, when
admire_art finishes
and the art variable is
dropped, borrowed_art
will be pointing to nothing!

A key indicator that we have
a problem here is that the
lifetime for borrowed_art
is supposed to extend
beyond the lifetime for the
owned value that it’s
supposed to be referencing.

struct Artwork {
    name: String,
}

fn admire_art(art: Artwork) {
    println!(
        "Wow, {} really makes you think.",
        art.name,
    );
}

fn main() {
    let art1 = Artwork {
        name: "Man on Fire".to_string(),
    };

    let borrowed_art = &art1;

    admire_art(art1);

    println!(
        "I really enjoy {}",
        borrowed_art.name
    );
}
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struct Artwork {
name: String,

}

fn build_art() -> &Artwork {
let art = Artwork { name: "La Liberté guidant

le peuple".to_string() };

&art
}

fn main() {
let art = build_art();

}

The build_art function in listing 2.13 is invalid for a slightly different reason. art is

never moved; however, we try to return a reference to it, even though it is dropped at

the end of the function. Let’s look at the lifetime graph for this program in Figure 2.8. 

Figure 2.8 The lifetime graph for listing 2.13

The lifetime graph in figure 2.8 shows the same common warning sign as the graph in

figure 2.7. A reference extends past the drop point for the value that it should be ref-

erencing. It is possible to write Rust functions that return references, but those func-

tions will usually also take references as inputs. If a function returns a reference but

has no parameters or only takes in owned parameters, that’s usually a sign that you will

see a lifetime error when you to compile it. 

Listing 2.13 A function trying to return a reference to a dropped value

The return keyword is optional in Rust. The last 
expression in a function is used as a return value 
when there is no semicolon at the end of the line.

build_art

main

art

Once again, we have the
warning sign of a reference
being dropped long after
the value that it should be
referencing has been
dropped.

art

struct Artwork {
    name: String,
}

fn build_art() -> &Artwork {
    let art = Artwork {
        name:
            "La Liberté guidant le peuple"
            .to_string(),
    };

    &art
}

fn main() {
    let art = build_art();
}
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2.4 Rust’s string types

Nearly every programming language has some kind of support for string operations.

They’re just so useful; how could they not? Many programming languages have a

String type, but Rust differs from the pack slightly: it has multiple types that are used

to represent strings. The most common types are String and &str. Let’s take a look at

how they’re both used. 

 &str, also called a string reference, is the simpler of the two types, consisting only

of a pointer to a starting position in memory and a length. Due to its simplicity, &str is

the more flexible of the two types because the reference can point to any string data

anywhere in memory. It may be backed by a stack-allocated array buffer, a String, or

even a string literal compiled into the program binary itself. If you’re coming from C

or C++, you may be aware that string literals in these languages are subtly different

from other string values, even though they have the same types. String literals in C

and C++ are read-only because they are compiled into the binary and live in read-only

memory. If you try to run this C program, you will most likely get a segmentation fault

(illegal memory access error at run time).

int main(void) {
char *str = "hello, world!";
str[0] = '!';

return 0;
}

The code in listing 2.14 is invalid because it attempts to write data into a read-only

location. The C compiler doesn’t know that str points to read-only memory because

C types provide no information about whether values can be mutated. The equivalent

type for string literals in Rust is &'static str. The new syntax here, the 'static part,

is a lifetime annotation. This marker to the compiler explicitly calls out how long this

reference will be valid. We’ll discuss this topic in more depth in chapter 4, but for now,

you should know that &'static anything means the reference will live for the entire

runtime of the program. Since string literals are compiled into the binary, &'static

strs can reference them at any point without worrying about if they’ve been dropped

(because they cannot be dropped). It’s also legal in Rust to have a nonstatic reference

to a string literal. Let’s see what that might look like. 

struct Artwork {
name: &'static str,

}

fn admire_art(art: &Artwork) {
print_admiration(art.name);

}

Listing 2.14 A C program attempting to write to read-only memory

Listing 2.15 Nonstatic reference example

This line causes the 
segmentation fault.

When we pass the &'static str into a 
function that takes &str as its argument, 
we turn a &'static reference into an & 
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fn print_admiration(name: &str) {
println!("Wow, {} really makes you think.", name);

}

fn main() {
let art1 = Artwork { name: "The Ordeal of Owain" };

admire_art(&art1);
}

The fact that string references are immutable is relevant. Since they only point to

memory buffers, with no knowledge of how those buffers are constructed or what

extra capacity they might have, they can never be modified. If we want to modify our

string values, we need to look at the other type of string in Rust, String.

2.4.1 Mutable strings

If you’re coming from a language like Java, JavaScript, or Python, you may have first

heard of mutability in the context of strings. In these languages and many like them,

all strings are immutable; they cannot be changed after they are created. You may be

telling yourself that you frequently change the values of strings by using += operations

in these languages to concatenate a string onto another string, but you’re not quite

right. In languages with immutable strings, you cannot edit the memory of a string

after it is created; you may only edit the string by creating a new string that contains

the newly requested content. 

 Let’s imagine that we need to create a program that adds a dot "." character onto

a string each time some action occurs, which we will approximate with a for loop of

10 million iterations.

x = ""

for _ in range(0, 10_000_000):
x += "."

print(len(x))

Each time the for loop in listing 2.16 iterates, it creates a new string that holds a copy

of all the data in the current string plus one dot character. Consequently, to build our

string of 10 million dots, our program needs to perform 10 million allocations, result-

ing in 9,999,999 copied strings that aren’t useful. The process of copying memory to a

larger storage area is referred to as reallocation. Let’s contrast this process with Rust,

which provides the developer with the ability to mutate strings. 

 In Rust, a String, or owned string, is made up of a growable, heap-allocated buffer

that stores the character data. If you want to add extra characters to the end of the

string, you can add them to the end of the buffer. If you want to swap characters out of

the middle, you can move them around in the middle. These buffers have both a

Listing 2.16 Creating a very large string one character at a time in Python

We no longer need to call 
to_string() because the 
expected type for name is 
not String but &'static str.
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length and a capacity. The length represents the number of valid elements in the buf-

fer, and the capacity represents the number of elements that the buffer can hold when

it’s full. The only time that Rust String values need to do the extra allocation and

copying step like Python is when mutating the string would cause the length of the

buffer to exceed its capacity. In these instances, the buffer will be reallocated with a

capacity at least as large as would be required to store the new data. The Rust standard

library does not guarantee any particular strategy for how the buffer will increase, but

it is possible for the buffer’s capacity to, for instance, double when pushing a single

character onto a string, so that future character pushes will not require reallocation.

 Let’s see how to use a string to mimic the functionality of listing 2.16.

fn main() {

let mut x = String::new();

for _ in 0..10_000_000 {

x.push('.');

}

println!("{}", x.len());

}

As you can see in listing 2.17, most of the buffer maintenance is hidden from the

developer. Generally, the only interaction that you will have with it directly is to set its

capacity to some predetermined size to try to limit the number of allocations that your

code does. If we want to make the fewest allocations possible to have the fastest run

time possible for our program, we can use the String::with_capacity function to

explicitly set the capacity up front. In this way, our 10 million dots program could run

with just a single allocation! If you’re working with large strings, this ability can lead to

a large performance gain. 

 The following listing demonstrates how to use with_capacity.

fn main() {

let mut x = String::with_capacity(10_000_000);

for i in 0..10_000_000 {

x.push('.');

}

println!("{}", x.len());

}

String::with_capacity is a performance optimization. The String values it returns

can be used in the same way as the strings from String::new, but they may perform

Listing 2.17 Creating a very large string one character at a time in Rust

Listing 2.18 Preallocating strings to aid performance

String::new creates a new string with a 
buffer that has a capacity of zero. This 
function does not perform any allocations.

This line is the only one that 
needed to change to drop to a 
single allocation. The code using 
the string remains the same.
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better in certain instances. It is safe to grow a string past its capacity using push; the

string will reallocate its buffer internally.

 You may be wondering about converting between Rust’s two different string types,

so let’s explore how to do that. Both conversions are easy for the developer to per-

form, but one direction is much costlier for the computer at run time. Converting a

String to an &str is very cheap. Since &str values are simply a pointer and a length,

we can copy the starting pointer of the String’s buffer and its length. That’s just two

64-bit integers to copy on most machines, which is very inexpensive to do. The follow-

ing listing demonstrates.

fn print_admiration(name: &str) {
println!("Wow, {} really makes you think.", name);

}

fn main() {
let value = String::new();

print_admiration(value.as_str());
}

Going the other way, converting an &str to a String is a bit more expensive for the

computer. Since all String values have their own heap-allocated buffer, creating a

String from an &str requires the computer to allocate a buffer that is at least large

enough to hold all the data in the &str and then copy all of the data from the &str to

the newly created buffer. If you’re doing that in a tight loop, it can tank your perfor-

mance. The upside is that it’s easy to see where this conversion is happening and limit

it in most cases. You’ve been doing this conversion in this chapter; it’s accomplished

by calling the .to_string() method on &str values. 

fn print_admiration(name: String) {
println!("Wow, {} really makes you think.", name);

}

fn main() {
let value = "Artwork";

print_admiration(value.to_string());
}

It’s a common idiom for Rust to provide similar methods with as_ and to_ prefixes.

as_ generally means that you’re getting a cheap reference to something, and to_ indi-

cates that you’re allocating and copying to an owned data structure. 

 Like most of the material in this chapter, these different string types will prove

helpful in the long run but can be confusing in the short term. Knowing when to use

Listing 2.19 Converting a String to a string reference

Listing 2.20 Converting a string reference to a String
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the different string types comes with experience; for now, we can generalize. If you’re

storing data in a struct, which will live for a long time, you should probably use a

String, and if you’re just passing read-only data to a function, it should probably take

an &str. If you’re not sure which one to use, String is the more flexible option, and

the extra allocations that come from creating Strings from string references can be

cleaned up later. Now let’s move on to the final area where Rust differs significantly

from other programming languages—error handling. 

2.5 Enums and error handling

Many programming languages use exceptions for propagating errors up the stack

from the place where they originated to some kind of handling code. Rust differs

from these languages. Errors are normal values handled with normal control flow ele-

ments that are not specific to the errors. First, let’s use an example to walk through a

simple use case for enums outside of the error context. We’ll introduce error han-

dling after we have a solid understanding. 

2.5.1 Enums

FizzBuzz is a popular programming challenge to test a candidate’s ability to use basic

control flow elements such as loops and if statements. It goes like this: write a pro-

gram that counts from 1 to 100. Each time you reach a number that is divisible by 3,

print the word "fizz". Each time you reach a number divisible by 5, print the word

"buzz". If a number is divisible by both 3 and 5, print "fizzbuzz". Otherwise, print

the number itself. We’re going to implement FizzBuzz using one outer function to do

the looping and printing and a helper function to perform the divisible checking.

The helper function should return an enum that tells the main function what to do. 

 Let’s start by writing our main function, which will perform the looping and print-

ing of the numbers. 

fn main() {
for i in 1..101 {

println!("{}", i);
}

}

Next, let’s take a first pass at our helper function that performs divisibility checking on

an input value.

fn main() {
for i in 1..101 {

print_fizzbuzz(i);
}

}

Listing 2.21 Function that loops through the numbers 1 to 100

Listing 2.22 FizzBuzz program with a helper function

This for loop will iterate over the numbers 1 to 
100. The range syntax of x..y has an inclusive 
lower bound and an exclusive upper bound.
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fn print_fizzbuzz(x: i32) {
println!("{}", fizzbuzz(x));

}

fn fizzbuzz(x: i32) -> String {
if x % 3 == 0 && x % 5 == 0 {

String::from("FizzBuzz")
} else if x % 3 == 0 {

String::from("Fizz")
} else if x % 5 == 0 {

String::from("Buzz")
} else {

format!("{}", x)
}

}

Although this code solves our FizzBuzz problem, it has some room for improvement.

In a large system, we don’t want to pass strings around to communicate state. Rust is a

strongly typed language, and we should take advantage of that strong typing to ensure

that the return values of fizzbuzz are always handled correctly. What if we wanted to

use the same divisibility checking but display the results in a different way? For exam-

ple, we may want to send the result over some kind of network stream in a compact

way. We’d need to parse the "Fizz"/"Buzz"/"FizzBuzz" strings and parse the num-

bers from strings as well. We can do better.

 The proper way to communicate between the print_fizzbuzz and fizzbuzz func-

tions is with an enum. Enums are types that can have exactly one of a predetermined

number of possible values. Since our fizzbuzz function has four possible return val-

ues ("fizz", "buzz", "fizzbuzz", or something to indicate indivisibility), it’s the per-

fect use case. Enums exist in many programming languages, but they are at the core of

Rust. Later in this section, we’ll see how enums are used for error handling in Rust,

but for now, we’ll stick to FizzBuzz. Let’s write an enum that allows our helper func-

tion to communicate the different results of the helper function back to the

print_fizbuzz function. The following listing shows what this enum looks like. 

enum FizzBuzzValue {
Fizz,
Buzz,
FizzBuzz,
NotDivisible,

}

Each entry in the list of possible states for the enum is called a variant. We can see that

all of the possible return values are represented within the FizzBuzzValue enum. Now

let’s take a look at how we can use it from our fizzbuzz function. 

Listing 2.23 The enum holding the results of the fizzbuzz function

The separate print_fizzbuzz and fizzbuzz 
functions separate the result computation from 
the presentation of that result to the user. The 
benefits will become more clear as we go on. 

format! is a macro that uses the same 
syntax as println!, but instead of printing 
its result to stdout, it returns a String. 
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enum FizzBuzzValue {
Fizz,
Buzz,
FizzBuzz,
NotDivisible,

}

fn fizzbuzz(x: i32) -> FizzBuzzValue {
if x % 3 == 0 && x % 5 == 0 {

FizzBuzzValue::FizzBuzz
} else if x % 3 == 0 {

FizzBuzzValue::Fizz
} else if x % 5 == 0 {

FizzBuzzValue::Buzz
} else {

FizzBuzzValue::NotDivisible
}

}

Now, if we want to use the return value of fizzbuzz to print out a message, we can use

a match expression. match is similar to switch statements in Java, C, C++, and Go, but

it has some additional functionality that we’ll explore in a moment. 

enum FizzBuzzValue {
Fizz,
Buzz,
FizzBuzz,
NotDivisible,

}

fn main() {
for i in 1..101 {

print_fizzbuzz(i);
}

}

fn print_fizzbuzz(x: i32) {
match fizzbuzz(x) {

FizzBuzzValue::FizzBuzz => {
println!("FizzBuzz");

}
FizzBuzzValue::Fizz => {

println!("Fizz");
}
FizzBuzzValue::Buzz => {

println!("Buzz");
}
FizzBuzzValue::NotDivisible => {

println!("{}", x);

Listing 2.24 Returning an enum from a function

Listing 2.25 Using match expressions with enums

Each branch, or arm, of the match 
expression has a condition, the “big arrow” 
symbol (=>) and then an expression that 
will be evaluated if that condition is true.
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}
}

}

fn fizzbuzz(x: i32) -> FizzBuzzValue {
if x % 3 == 0 && x % 5 == 0 {

FizzBuzzValue::FizzBuzz
} else if x % 3 == 0 {

FizzBuzzValue::Fizz
} else if x % 5 == 0 {

FizzBuzzValue::Buzz
} else {

FizzBuzzValue::NotDivisible
}

}

This approach seems to be working well. We have effectively separated the computa-

tion of results from the presentation of those results to the user. In an example this

small, it may seem odd to have this separation when it would certainly be less code to

remove it or even put the println! macro calls inside the fizzbuzz function, but in

larger programs, it is very beneficial to use enums to create a single, standardized way

to represent values that may have multiple variants at run time. 

 Our FizzBuzzValue enum works well enough for this small example, but it does

have a flaw that would show up in larger programs. The final variant in the enum,

NotDivisible, has an extra piece of data that should be associated with it, but our

code doesn’t capture it—namely, the input number that wasn’t divisible by 3 or 5. If

we want to print this result in the program somewhere else, we’d need to come up

with a way to store the number and the NotDivisible information. Rust’s enums

make this extra storage extremely straightforward. Each enum variant can hold, in

addition to the data on which variant it is, any number of extra data fields. Let’s see an

example of what that might look like. 

enum FizzBuzzValue {
Fizz,
Buzz,
FizzBuzz,
NotDivisible(i32),

}

fn main() {
for i in 1..101 {

print_fizzbuzz(i);
}

}

fn print_fizzbuzz(x: i32) {
match fizzbuzz(x) {

FizzBuzzValue::FizzBuzz => {

Listing 2.26 FizzBuzzValue enum holding a number not divisible by 3 or 5

This i32 argument indicates that the 
NotDivisible variant will always have 
an i32 value associated with it.
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println!("FizzBuzz");
}
FizzBuzzValue::Fizz => {

println!("Fizz");
}
FizzBuzzValue::Buzz => {

println!("Buzz");
}
FizzBuzzValue::NotDivisible(num) => {

println!("{}", num);
}

}
}

fn fizzbuzz(x: i32) -> FizzBuzzValue {
if x % 3 == 0 && x % 5 == 0 {

FizzBuzzValue::FizzBuzz
} else if x % 3 == 0 {

FizzBuzzValue::Fizz
} else if x % 5 == 0 {

FizzBuzzValue::Buzz
} else {

FizzBuzzValue::NotDivisible(x)
}

}

Our final match arm has changed slightly. Now we add the num variable, which gets its

value from the i32, which is stored in the NotDivisible variant. This removal of val-

ues from container types like enum variants is known as destructuring. We know that

every NotDivisible variant will contain an i32 because the enum declaration

requires it. With this enum declaration, it is not possible to construct a NotDivisible

without providing an i32. Further, it is not possible to access the i32 within the Not-

Divisible variant without some kind of checking to ensure that the FizzBuzzValue

value holds a NotDivisible. 

 Now that we have a bit of an understanding about how to use enums and match,

let’s take a look at how we can use them for error handling. 

2.5.2 Error handling with enums

Many programming languages represent errors as exceptions, and they have methods

for communicating exceptional conditions in programs. Exceptions “bubble up” the

stack until they encounter some special error-handling code, like a try/except block.

In Rust, errors are represented in the same way as normal values, and they use the same

control flow elements as normal values. This section will demonstrate how to write func-

tions that might fail at run time, and how to handle the errors from those functions. 

 Let’s imagine that we received a new requirement for our fizzbuzz function. Now,

in addition to its functionality determining divisibility, the function should return an

error if the number provided is negative. In our program, the values that will be pro-

vided to fizzbuzz are known because they are, of course, typed directly into the

The num variable is assigned a value 
from the i32, which is stored in the 
NotDivisible variant of the enum.

We put the value of the 
number x into the NotDivisible 
variant of the enum here.
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source code. However, imagine for a moment that they’re coming from some user

input somewhere. We should be able to handle these errors differently from the nor-

mal enum return values that the function has, and the FizzBuzzValue enum should

not be expanded to account for the possible error state. 

 Let’s take a look at how we might represent this possible failure condition in our

program. The Rust standard library contains a type called Result which holds either

an indication of a successful computation and the output of that computation or an

indication of an error and more detailed information on that error. The following list-

ing shows the declaration of that enum. 

enum Result<T, E> {
Ok(T),
Err(E),

}

The Result is one of the most commonly used types in Rust code because any func-

tion that might possibly fail returns its value wrapped in a Result. Let’s revisit our pro-

gram to see how it needs to change if the fizzbuzz function might return an error. 

enum FizzBuzzValue {
Fizz,
Buzz,
FizzBuzz,
NotDivisible(i32),

}

fn main() {
for i in 1..101 {

match print_fizzbuzz(i) {
Ok(()) => {}
Err(e) => {

eprintln!("Error: {}", e);
return;

}
}

}
}

fn print_fizzbuzz(x: i32) -> Result<(), &'static str> {
match fizzbuzz(x) {

Ok(result) => {
match result {

FizzBuzzValue::FizzBuzz => {
println!("FizzBuzz");

}

Listing 2.27 The definition of the Result type

Listing 2.28 fizzbuzz function that may return an error

The <T, E> syntax creates two generic 
variables, or type variables, T and E.

The T refers to the type variable T created on 
the first line. It indicates that the Ok variant 
can hold a value of absolutely any type.

Like the Ok variant, the
Err variant can hold a

value of any type.

The eprintln! macro works the same as println!, 
but it prints its message to STDERR instead of 
STDOUT. It is commonly used for showing error 
messages, as the error messages will not 
interfere with the normal output of the 
program, still taking place on STDOUT.

The success type is (), which is the unit type (see the next
section). The type that we’ve provided for the Err variant

is &'static str. Strings and &'static str are sometimes
used for simple error communication like this.

Just like with the NotDivisible variant, we’re not able 
to access the FizzBuzzValue inside the Result unless 
we have a match expression that ensures the value 
returned from fizzbuzz was successful or Ok.
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FizzBuzzValue::Fizz => {
println!("Fizz");

}
FizzBuzzValue::Buzz => {
println!("Buzz");

}
FizzBuzzValue::NotDivisible(num) => {
println!("{}", num);

}
}

Ok(())
}
Err(e) => {

Err(e)
}

}
}

fn fizzbuzz(x: i32) -> Result<FizzBuzzValue, &'static str> {
if x < 0 {

Err("Provided number must be positive!")
} else if x % 3 == 0 && x % 5 == 0 {

Ok(FizzBuzzValue::FizzBuzz)
} else if x % 3 == 0 {

Ok(FizzBuzzValue::Fizz)
} else if x % 5 == 0 {

Ok(FizzBuzzValue::Buzz)
} else {

Ok(FizzBuzzValue::NotDivisible(x))
}

}

A few new important things are going on in this code. The first and most obvious is

the introduction of the Result values in the return types of print_fizzbuzz and

fizzbuzz. Both functions now return Result values with the same error type

(&'static str), but they have different types for Ok. fizzbuzz returns the same

FizzBuzzValue that it did before, but what is () in the return type of print_fizz-

buzz? It is the unit type, and we’re going to take a look at it right now. 

2.5.3 The unit type

The unit type is a type whose only possible value is itself and can hold no information.

It represents the concept of nothing. It is similar to null in other programming lan-

guages but with a very important difference. In most programming languages that

have null values, null is a valid value for any reference type. For example, the follow-

ing Java code compiles and runs, printing null to the console. 

public class Main {
public static void main(String[] args) {

Listing 2.29 null in Java

All of the code paths in this function no longer 
return just a FizzBuzzValue; they must now 
wrap the FizzBuzzValue values in an Ok to 
indicate that the computation succeeded.
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String x = null;
System.out.println(x);

}
}

This code works because Java and many other languages allow all reference types to be

assigned the value null. This can cause a great many bugs at run time, when program-

mers forget to check whether a reference holds the value null or not. Let’s try writing

the same code in Rust. 

fn main() {
let x: String = ();
println!("{}", x);

}

If we try to run this code, we’ll find that it doesn’t compile. The Rust compiler pro-

vides us with an error message explaining that the actual type () does not match the

expected type of String:

$ cargo run
error[E0308]: mismatched types
--> src/main.rs:2:19
|

2 | let x: String = ();
| ------ ^^ expected struct `String`, found `()`
| |
| expected due to this

error: aborting due to previous error

It doesn’t compile because the unit type is its own type, completely independent from

all other types. A better analog for the unit type than null is void. You may have

noticed that the main method in the Java code in listing 2.29 returns type void. void

is Java’s type-level representation of nothing. In contrast to Rust’s unit type, a value of

type void cannot be stored in Java. You may also have noticed when writing our Rust

code that we do not annotate the return types of functions if they don’t return a value,

not because they don’t return a value, but rather because unannotated functions all

return the unit type. The three functions in the following listing are equivalent.

fn foo() {
println!("Hello!");

}

fn bar() -> () {
println!("Hello!");

}

Listing 2.30 Unit type in Rust

Listing 2.31 Three functions that all return the unit type

This unannotated function is how we normally write 
functions that don’t return values. Note that this 
function still returns the unit type, but it is implicit.

This function introduces the explicit 
annotation for the unit type as the 
return type of the function.
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fn baz() -> () {
println!("Hello!");
()

}

All three of these functions print “Hello” and exit, returning a value of the unit type.

The only difference is that the latter two are more explicit. The bar function is similar

to how a void function might be written in another language—explicit annotation of

the return type but implicit return of the value itself. 

 Let’s go back to the print_fizzbuzz function in listing 2.28. The declaration is 

fn print_fizzbuzz(x: i32) -> Result<(), &'static str>

The Result returned has a unit type in its Ok type position, which means that when

the Ok variant is constructed, it will always hold a value that provides zero extra infor-

mation. If you think about what the function is doing, it makes sense. If the function

completes successfully, what value would it possibly have to provide to its caller, other

than an indication that it succeeded? Because the success case for the function

doesn’t communicate any meaningful extra information, we return the unit type

when the function succeeds. Values of the unit type are generally not useful by them-

selves; we just need to use it in this instance because the Result type requires us to

provide a type for the Ok and Err variants and () is the most sensible type for the Ok

variant of a function that doesn’t need to send back any other values. Before we added

the result, the return type of print_fizzbuzz was actually (); it was just implicit rather

than explicit as it is now. 

 Let’s return to our FizzBuzz code and finish our look at error handling by intro-

ducing a custom error type. 

2.5.4 Error types

As developers, we know what types of errors our code may encounter when running; it

might encounter I/O errors, network errors, precondition failures, missing data, etc.

Most Rust programs will create custom types that enumerate the errors that might be

returned so that they can each be handled in their own way. After encountering a net-

work error, you may want to repeat a request, while an error like a missing file should

probably be logged, and the program should continue if possible or abort if not. Since

we want to represent different possibilities for errors in a single type, we will create an

enum. Since our FizzBuzz program only has one possible error—returned when the

fizzbuzz function receives a negative number—let’s see what that might look like. 

enum Error {
GotNegative,

}

The name Error is conventional, but it really can be named anything we want;

remember, it’s just a normal type. A program that does more operations may have

Listing 2.32 The error type for our FizzBuzz program

In addition to the return type annotation, this 
function includes this explicit return of the unit value.
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many different variants on its error type, or it may have variants that wrap error types

from other libraries. Now that we have an Error type, let’s add it to our code. 

enum FizzBuzzValue {
Fizz,
Buzz,
FizzBuzz,
NotDivisible(i32),

}

enum Error {
GotNegative,

}

fn main() {
for i in 1..101 {

match print_fizzbuzz(i) {
Ok(()) => {}
Err(e) => {

match e {
Error::GotNegative => {

eprintln!("Error: Fizz Buzz only
supports positive numbers!");

return;
}

}
}

}
}

}

fn print_fizzbuzz(x: i32) -> Result<(), Error> {
match fizzbuzz(x) {

Ok(result) => {
match result {

FizzBuzzValue::FizzBuzz => {
println!("FizzBuzz");

}
FizzBuzzValue::Fizz => {
println!("Fizz");

}
FizzBuzzValue::Buzz => {
println!("Buzz");

}
FizzBuzzValue::NotDivisible(num) => {
println!("{}", num);

}
}

Ok(())
}
Err(e) => {

Listing 2.33 FizzBuzz with custom error type
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Err(e)
}

}
}

fn fizzbuzz(x: i32) -> Result<FizzBuzzValue, Error> {
if x < 0 {

Err(Error::GotNegative)
} else if x % 3 == 0 && x % 5 == 0 {

Ok(FizzBuzzValue::FizzBuzz)
} else if x % 3 == 0 {

Ok(FizzBuzzValue::Fizz)
} else if x % 5 == 0 {

Ok(FizzBuzzValue::Buzz)
} else {

Ok(FizzBuzzValue::NotDivisible(x))
}

}

We can see that including a custom error type is not a big change from what the code

looked like before. Some return types changed, and we had to update what we did with

the error in the print_fizzbuzz function since it can’t be printed directly anymore. 

 Now, let’s look at how the error handling in the print_fizzbuzz function can be

simplified. Right now, it’s returning any error it sees directly to its caller. It’s not doing

any inspection of the error other than “Is it an error or not?” This error-handling pat-

tern is very common in Rust functions. If some function returns an error, just forward

it to this function’s caller, which is similar to how exceptions bubble up the stack until

they hit error-handling code. The difference is that this choice is deliberately made by

the programmer and not something that can be forgotten. 

 Since this pattern is so common, language-level support for it can be found in the

syntax. This syntax is the question mark operator (?). The ? operator is most fre-

quently used on Result types, and here’s how it works when you inspect a Result:

 If it contains an Ok variant, the expression evaluates to the value inside the Ok. 

 If it contains an Err variant, it returns this Err from the function immediately. 

Let’s look at some real Rust code. Imagine that we want to call fizzbuzz and print out

a message if it succeeds or forward along the error if it fails. The two Rust functions in

the following listing solve the problem in the same way, but one uses the question

mark operator. Remember, our fizzbuzz function returns a Result<FizzBuzzValue,

Error>. 

fn foo(i: i32) -> Result<FizzBuzzValue, Error> {
let result = match fizzbuzz(i) {

Ok(x) => {
x

}

Listing 2.34 Example use of the ? operator

Because match is an expression, not a 
statement, in Rust, we can use it in an 
expression position, like assigning a variable 
to the result of a match expression.
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Err(e) => {
return Err(e);

}
};

println!("{} is a valid number for fizzbuzz", i);

Ok(result);
}

fn bar(i: i32) -> Result<FizzBuzzValue, Error> {
let result = fizzbuzz(i)?;

println!("{} is a valid number for fizzbuzz", i);

Ok(result);
}

You may notice that in the first function, we use the result of our match expression as

the assignment for the variable result. Because the Err arm of the match expression

returns from the function when it runs, if the Ok arm runs, the whole match expres-

sion will evaluate to FizzBuzzValue, which is inside of the Ok. So, the type of result in

this function is FizzBuzzValue, not Result<FizzBuzzValue, Error>. 

 The functionality of the second function is identical, as the ? operator is basically a

condensed form of the match and early return seen in the first function. Let’s apply

this ? error handling to our existing FizzBuzz code. 

enum FizzBuzzValue {
Fizz,
Buzz,
FizzBuzz,
NotDivisible(i32),

}

enum Error {
GotNegative,

}

fn main() {
for i in 1..101 {

match print_fizzbuzz(i) {
Ok(()) => {}
Err(e) => {

match e {
Error::GotNegative => {

eprintln!("Error: Fizz Buzz only
supports positive numbers!");

return;
}

Listing 2.35 FizzBuzz program with ? added

Note the use of the ? operator. This line 
will early-return from the function if 
the call to fizzbuzz returns an Err.

The only way for this line to 
be reached is if the call to 
fizzbuzz returns an Ok.
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}
}

}

}
}

fn print_fizzbuzz(x: i32) -> Result<(), Error> {
match fizzbuzz(x)? {

FizzBuzzValue::FizzBuzz => {

println!("FizzBuzz");
}
FizzBuzzValue::Fizz => {

println!("Fizz");
}
FizzBuzzValue::Buzz => {

println!("Buzz");
}
FizzBuzzValue::NotDivisible(num) => {

println!("{}", num);
}

}

Ok(())

}

fn fizzbuzz(x: i32) -> Result<FizzBuzzValue, Error> {

if x < 0 {
Err(Error::GotNegative)

} else if x % 3 == 0 && x % 5 == 0 {

Ok(FizzBuzzValue::FizzBuzz)
} else if x % 3 == 0 {

Ok(FizzBuzzValue::Fizz)

} else if x % 5 == 0 {
Ok(FizzBuzzValue::Buzz)

} else {

Ok(FizzBuzzValue::NotDivisible(x))
}

}

Many Rust libraries are designed with well-formed error types that can be used to

determine the root cause of failures. However, sometimes we need to do a bit of extra

work to wrap overly generic errors with more specific contexts. Let’s briefly look at

how we can transform errors. 

2.5.5 Transforming errors

Functions that can fail in Rust return values of the Result type. Thus, we can cleanly

separate the error case from the success case when inspecting the return value of a

function. Usually the type in the error variant expresses the cause of the error so that

we can determine why the function failed, but in some cases, we can’t. 

 Imagine that you need to write a function to perform some simple validations in a

user creation tool. You must write a function validate_username that accepts an &str

We added the ? operator, which will 
early-return from the print_fizzbuzz 
function if fizzbuzz(i) evaluates to an Err.
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username as input and returns a result indicating whether the validation succeeded or

failed, along with the nature of the failure if present. Two library functions are pro-

vided to perform the validation: validate_lowercase asserts that the username is all

lowercase characters, and validate_unique validates that this username does not

already exist in the system. You do not write either of these validation functions, and

you cannot change their type signatures. Their function signatures look like this:

fn validate_lowercase(username: &str) -> Result<(), ()>

fn validate_unique(username: &str) -> Result<(), ()>

Your validate_username function needs to have this signature and use this error

type:

enum UsernameError {
NotLowercase,
NotUnique,

}

fn validate_username(username: &str) -> Result<(), UsernameError>

If we took a simple initial pass at this problem, we might come up with something like

this:

fn validate_username(username: &str) -> Result<(), UsernameError>
{

validate_lowercase(username)?;
validate_unique(username)?;

Ok(())
}

If validate_lowercase and validate_unique are written with the UsernameError

type in mind, then this code is exactly how we would write the validation function.

However, these functions both return the exact same error type—the unit type. We

need some sort of mechanism to convert this unit value into values of UsernameError

that match the individual validation functions. If validate_lowercase fails, we should

return UsernameError::NotLowercase; similarly, NotUnique should be returned for

validate_unique. We can accomplish this with a standard match expression, but it

would be nice if we did not need to write a lot of unnecessary code for doing nothing

in the Ok case. 

 One tool that we can reach for to help us out is a function on the Result type

called map_err. If you are familiar with the map function in functional programming,

you may be able to guess the purpose of the map_err function. map_err is a function

that accepts another function, which we will call F, as its input and calls F when the

result holds an Err variant. F accepts the type in the original Result’s Err variant as

its input and returns a new value, which is wrapped in the Err variant of a new Result.

That may sound a bit daunting, but the implementation is really quite simple:
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fn map_err<T, E1, E2>(
r: Result<T, E1>,
transform: fn(E1) -> E2,

) -> Result<T, E2> {
match r {

Ok(x) => Ok(x),
Err(e) => Err(transform(e)),

}
}

That’s it—that’s the whole function! This implementation is slightly simplified since

we have not looked at how to write instance functions yet. In practice, this freestand-

ing function works exactly the same as Result::map_err in the standard library. Let’s

look back at our username validation example.

 You have Result<(), ()> and you want Result<(), UsernameError>. To get it, you

can use map_err and pass it a function with this signature:

fn(err: ()) -> UsernameError

The err value is the value in the Err variant of the original Result. The Username-

Error returned from this function will be placed in the Err variant of the Result

returned from map_err. If the Result holds an Ok variant, the function passed to

map_err will never be called. Let’s see how we can apply map_err to our username val-

idation function:

fn validate_username(username: &str) -> Result<(), UsernameError>
{

validate_lowercase(username).map_err(lowercase_err)?;
validate_unique(username).map_err(unique_err)?;

Ok(())
}

fn lowercase_err(x: ()) -> UsernameError {
UsernameError::NotLowercase

}

fn unique_err(x: ()) -> UsernameError {
UsernameError::NotUnique

}

This code will successfully match the UsernameError variants to the functions they

should be associated with. You may be wondering if this method uses less code than

using some match statements. In fact, using map_err with named functions and

explicit parameter/return types doesn’t reduce the amount of code much. However,

we can use a closure to express the same thing in less code. 

 Closures, sometimes called lambdas by other programming languages, are anony-

mous functions written inline. They are very helpful when using functions that accept

other functions as parameters, like map_err. Closures in Rust can contain a single

expression or a block with multiple expressions. For now, we will look at closures
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containing a single expression. To write a closure that accepts two parameters and

returns the sum of these two parameters, we would write the following:

|x, y| x + y

Parameters appear between the pipe characters separated by commas, and the pipes

are immediately followed by the expression to be returned from the closure. Closures

may have their parameter types explicitly written out using syntax that mirrors the

standard Rust syntax for functions. However, annotating return types requires wrap-

ping the return expression in curly braces. The following two closures are functionally

identical and can both be used like normal functions:

fn main() {
let add1 = |x: i32, y: i32| -> i32 {x + y};

let add2 = |x: i32, y: i32| x + y;

println!("{}", add1(3, 4));
println!("{}", add2(3, 4));

}

Although you can annotate return types explicitly, due to the nature of closures being

used as arguments to other functions, which themselves provide type hinting to the

compiler, it is almost never necessary to write types for closure parameters or return

types in practice.

 Now, by combining what we learned about map_err with closures, we can get a

much more compact implementation of validate_username:

fn validate_username(username: &str) -> Result<(), UsernameError>
{

validate_lowercase(username).map_err(
|x| UsernameError::NotLowercase)?;

validate_unique(username).map_err(
|x| UsernameError::NotUnique)?;

Ok(())
}

If we try to compile this code, we get a warning that the parameter x is unused in our

closures. We can silence this warning by replacing x with an underscore, which hints

to the compiler that we know we are ignoring the value and not using it:

fn validate_username(username: &str) -> Result<(), UsernameError>
{

validate_lowercase(username).map_err(
|_| UsernameError::NotLowercase)?;

validate_unique(username).map_err(
|_| UsernameError::NotUnique)?;

Ok(())
}

We don’t need to tell the compiler that this 
closure returns an i32 because adding an i32 
with an i32 can only ever result in an i32.
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Let’s put all of this code together into one program that does the validation and shows

the result to the user.

enum UsernameError {
NotLowercase,
NotUnique,

}

fn main() {

match validate_username("user1") {
Ok(()) => println!("Valid username"),
Err(UsernameError::NotLowercase) => println!(

"Username must be lowercase"),
Err(UsernameError::NotUnique) => println!(

"Username already exists"),

}
}

fn validate_username(username: &str) -> Result<(), UsernameError>
{

validate_lowercase(username).map_err(
|_| UsernameError::NotLowercase)?;

validate_unique(username).map_err(

|_| UsernameError::NotUnique)?;

Ok(())

}

fn validate_lowercase(username: &str) -> Result<(), ()> {

Ok(())
}

fn validate_unique(username: &str) -> Result<(), ()> {
Ok(())

}

Sometimes, instead of passing an error back to the caller, we want to assert that an

error did not occur and exit the whole program if it did. To do so, we need to take a

look at panicking with errors. 

2.5.6 Panicking with errors

In Rust, errors are values. They are normal values that live in variables just like num-

bers or strings or any other kind of data your program might interact with. They’re

not scary; they don’t have their own kind of special control flow logic (aside from

explicit early returns with ?). They are simply values that need to be dealt with. How to

deal with them is usually delegated to a caller at some level. The caller may log the

errors and continue, retry the operation until achieving a success, or totally give up

and exit the program with an error. 

Listing 2.36 Program that validates usernames

We didn’t implement 
validate_lowercase or 
validate_unique because 
we are assuming that these 
are library functions that 
already exist.
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 Let’s go back to our FizzBuzz program and imagine that we want to rewrite the

print_fizzbuzz function so that it never returns an error value and ends the whole

program if it encounters an error. We can do this by removing the ? syntax from our

match statement, reintroducing the Ok/Err matching from listing 2.33, and replacing

the code that passes an err variant back to the caller with one that calls the panic!

macro. 

enum FizzBuzzValue {
Fizz,
Buzz,
FizzBuzz,
NotDivisible(i32),

}

enum Error {
GotNegative,

}

fn main() {
print_fizzbuzz(-1);

}

fn print_fizzbuzz(x: i32) {
match fizzbuzz(x) {

Ok(result) => match result {
FizzBuzzValue::FizzBuzz => {

println!("FizzBuzz");
}
FizzBuzzValue::Fizz => {

println!("Fizz");
}
FizzBuzzValue::Buzz => {

println!("Buzz");
}
FizzBuzzValue::NotDivisible(num) => {

println!("{}", num);
}

},
Err(Error::GotNegative) => {

panic!("Got a negative number for fizzbuzz: {}", x);
}

}
}

fn fizzbuzz(x: i32) -> Result<FizzBuzzValue, Error> {
if x < 0 {

Err(Error::GotNegative)
} else if x % 3 == 0 && x % 5 == 0 {

Ok(FizzBuzzValue::FizzBuzz)
} else if x % 3 == 0 {

Listing 2.37 Panicking when print_fizzbuzz sees an error

The call site in the main function 
is changed to be sure that our 
error handler is exercised.

The function no longer returns a Result. The 
possibility that the function may fail is no 
longer visible in its type signature.

We removed the trailing Ok(()) at the 
end of this match branch in previous 
listings because the function does not 
return a Result anymore. 
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Ok(FizzBuzzValue::Fizz)
} else if x % 5 == 0 {

Ok(FizzBuzzValue::Buzz)
} else {

Ok(FizzBuzzValue::NotDivisible(x))
}

}

panic! is a new macro for us, so let’s briefly touch on what it means. Rust’s panic!

macro is similar to the panic function in Go: it panics the current thread and unwinds

the stack until the top of the thread’s stack is reached. Since our program has only a

single main thread, panic! will exit the program with an error state. Calling panic!

from a background thread will exit that particular thread. It may seem odd to exit the

program if we encounter a single error, but panic! is most useful for performing run-

time assertions that guarantee that the program is not in an invalid state or exiting if

an unrecoverable error is seen. If we run our code, we can see the results of panicking

the main thread:

$ cargo run
thread 'main' panicked at 'Got a negative

number for fizzbuzz: -1', main.rs:35:7
note: run with `RUST_BACKTRACE=1` environment

variable to display a backtrace

We do get some helpful output from Rust telling us that we can provide an environ-

ment variable to get backtrace information. Let’s try that out:

$ env RUST_BACKTRACE=1 cargo run
thread 'main' panicked at 'Got a negative number

for fizzbuzz: -1', main.rs:33:7
stack backtrace:

0: rust_begin_unwind
at /rustc/library/std/src/panicking.rs:475

1: std::panicking::begin_panic_fmt
at /rustc/library/std/src/panicking.rs:429

2: chapter_02_listing_35::print_fizzbuzz
at ./src/main.rs:33

3: chapter_02_listing_35::main
at ./src/main.rs:13

4: core::ops::function::FnOnce::call_once
at rustlib/src/rust/library/
core/src/ops/function.rs:227

note: Some details are omitted, run with
`RUST_BACKTRACE=full` for a verbose backtrace.

Although not immediately apparent, looking at items 2 and 3 in the stack trace shows

that the main function calls print_fizzbuzz on line 13, and print_fizzbuzz panics on

line 33. In a more complex Rust program, stack traces can be very helpful. Rust disables

stack trace reporting for panics by default, but it can easily be enabled as we see here.

 Adding panicking to our print_fizzbuzz function made the code a bit more

annoying to read and write. What if we wanted to get the same panic behavior without
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rewriting our match statement blocks—something that works a bit more like the ?

operator? We can do this by using the .unwrap() or .expect() functions on the

Result we get back from fizzbuzz. Let’s take a look:

fn print_fizzbuzz(x: i32) {
match fizzbuzz(x).unwrap() {

FizzBuzzValue::FizzBuzz => {
println!("FizzBuzz");

}
FizzBuzzValue::Fizz => {

println!("Fizz");
}
FizzBuzzValue::Buzz => {

println!("Buzz");
}
FizzBuzzValue::NotDivisible(num) => {

println!("{}", num);
}

}
}

Our function got a lot shorter, but it still panics when an error is encountered. Let’s

try to run it now:

$ cargo run
error[E0599]: no method named `unwrap` found for enum
`std::result::Result<FizzBuzzValue, Error>` in the current scope

--> src/main.rs:17:21
|

8 | enum Error {
| ---------- doesn't satisfy `Error: std::fmt::Debug`

...
17 | match fizzbuzz(x).unwrap() {

| ^^^^^^ method not found in
| `std::result::Result<FizzBuzzValue, Error>`
|
= note: the method `unwrap` exists but
the following trait bounds were
not satisfied:

`Error: std::fmt::Debug`

We have not seen this interesting compiler error before! The note near the bottom

tells us that .unwrap() does exist, but our call to it is not valid because our Error type

does not implement the Debug trait. Traits are discussed in more depth in chapter 3,

but for now, let’s just say that types that implement the Debug trait can be printed to

the terminal in a representation that is useful for developers. We can easily add Debug

to our Error type using a special compiler directive on it called a derive. Here is what

that looks like:

#[derive(Debug)]
enum Error {

GotNegative,
}
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A few different traits can be derived like this, but Debug is one of the most common.

Essentially, this code tells the Rust compiler to generate code that can turn an Error

value into a string representation so that we can determine what type of error it is by

looking at it. Rust enums are represented at run time by numbers, and printing out

the numeric value of an enum is not generally useful. Debug is very similar to the

toString method in Java, but it can be autogenerated by the compiler with derive.

The following listing shows what the complete program should look like. 

enum FizzBuzzValue {
Fizz,
Buzz,
FizzBuzz,
NotDivisible(i32),

}

#[derive(Debug)]
enum Error {

GotNegative,
}

fn main() {
print_fizzbuzz(-1);

}

fn print_fizzbuzz(x: i32) {
match fizzbuzz(x).unwrap() {

FizzBuzzValue::FizzBuzz => {
println!("FizzBuzz");

}
FizzBuzzValue::Fizz => {

println!("Fizz");
}
FizzBuzzValue::Buzz => {

println!("Buzz");
}
FizzBuzzValue::NotDivisible(num) => {

println!("{}", num);
}

}
}

fn fizzbuzz(x: i32) -> Result<FizzBuzzValue, Error> {
if x < 0 {

Err(Error::GotNegative)
} else if x % 3 == 0 && x % 5 == 0 {

Ok(FizzBuzzValue::FizzBuzz)
} else if x % 3 == 0 {

Ok(FizzBuzzValue::Fizz)
} else if x % 5 == 0 {

Ok(FizzBuzzValue::Buzz)
} else {

Listing 2.38 Using .unwrap() to panic when an error is encountered
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Ok(FizzBuzzValue::NotDivisible(x))
}

}

Now that our error type implements Debug, let’s try running our program to see how

the panic looks:

$ cargo run
thread 'main' panicked at 'called `Result::unwrap()` on an `Err`

value: GotNegative', src/main.rs:18:21
note: run with `RUST_BACKTRACE=1` environment

variable to display a backtrace

Notice that the error message includes the location of the panic (line 18 of main.rs

from listing 2.38), and we get the value (the Debug representation of the Error, which

is GotNegative). If you are just starting a Rust program, the simplest form of error

handling is often adding .unwrap() after all of the functions that might fail because it

can be easier than setting up the proper Result return types with higher-level error

handling. In larger programs, it is very important to have proper error-handling code.

You don’t want a web server to panic and crash at run time because someone sent a

request with invalid data. However, it may be valid to panic during the initialization

phase in a web server if config files have syntactic or semantic errors because there is

no valid path forward in that scenario. 

 Using .unwrap(), we can get some information in the console, but sometimes we

want to provide just a little bit more. expect, a function very similar to .unwrap(),

allows us to write a small message that prints out along with the panics, so we can pro-

vide the user with some additional context for the error. Let’s edit print_fizzbuzz to

use expect instead of unwrap:

fn print_fizzbuzz(x: i32) {
match fizzbuzz(x).expect("Failed to run fizzbuzz") {

FizzBuzzValue::FizzBuzz => {
println!("FizzBuzz");

}
FizzBuzzValue::Fizz => {

println!("Fizz");
}
FizzBuzzValue::Buzz => {

println!("Buzz");
}
FizzBuzzValue::NotDivisible(num) => {

println!("{}", num);
}

}
}

Running the code now, we get a slightly better error message:

$ cargo run
thread 'main' panicked at 'Failed to run fizzbuzz:

GotNegative', main.rs:18:21
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note: run with `RUST_BACKTRACE=1` environment variable
to display a backtrace

Now, without looking at the code, we know that the error was tied directly to the fizz-

buzz function. The source of errors in this small program is quite obvious, but expect

can be much more helpful than unwrap in larger programs. 

Summary

 Rust’s ownership and borrowing system provides fast performance without the

worries of errors coming from manual memory management.

 The ownership of a value allows the Rust compiler to determine when it will be

created, valid for use, and dropped before the program ever runs.

 All values in all programming languages have lifetimes, but Rust’s compiler

explicitly enforces the rules.

 The lifetime system in Rust lets the compiler know that references are always

valid and that you will never read from invalid memory.

 Rust has multiple string types that give the programmer strong control over

allocations. Some types allow mutability after creation, while others are read-

only views.

 Enums can be used to store things that have a predefined list of possible values.

 Functions that might fail at run time return a Result, which is an enum con-

taining an indicator of success or failure, plus a value in the success case and an

error value in the failure case.

 It is not possible to use the success value from a Result without dealing with the

possibility of an error.

 The unit type, or (), is a type and value that represents nothing.

 Creating a custom error type is the best practice for Rust code.

 ? can be used to early-return from a function if a Result holds an error.

 map_err can be used to transform a Result holding one error type into a

Result holding another error type.

 Closures can be used as arguments to functions that accept other functions as

parameters. 

 panic! can be used to unwind the stack of a thread when a program is in an

invalid state and should exit.

 .unwrap() and .expect() can be used to panic if a Result holds an error.
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Introduction to C FFI
and unsafe Rust

The last chapter provided a high-level overview of Rust code and discussed some

elements of Rust that may be surprising or difficult to understand for new develop-

ers. Now that we’re able to write simple Rust programs, this chapter walks through

an example of how to embed Rust code within an existing C program.

 If we want to embed Rust code within an existing application, we need some

very well-defined semantics for how the two languages communicate, how values

are passed back and forth between them, and how memory may or may not be

shared between them. Ideally, this interface between the two languages will be well

supported across a number of different languages and platforms so we can avoid

rewriting code to perform a specific integration.

This chapter covers 

 Understanding C Foreign Function Interface and 

its relation to unsafe Rust

 Performing normally forbidden operations with 

unsafe Rust

 Refactoring a component of a C program into Rust
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 One well-supported method is to write functions that behave identically to C func-

tions at run time. They use the same calling conventions, pass parameters and return

values in the same way, and use types that can be represented safely in either lan-

guage. This method is referred to as the C Foreign Function Interface (FFI). This chapter

discusses how to write such Rust functions and use FFI support in Rust to integrate

Rust code into a C application. We’ll also discuss how to use unsafe blocks and func-

tions to perform some operations that normal Rust code doesn’t allow and when and

why these blocks are necessary when writing FFI code. 

3.1 Unsafe Rust

One of Rust’s main selling points is the memory safety it affords application develop-

ers. However, we may want to shed some of that memory safety to improve perfor-

mance, increase simplicity, or, most interesting to us, deal with types that the Rust

compiler can’t reason about. As we know from our discussion of the lifetime and own-

ership system in chapter 2, the Rust compiler can reason about when memory is safe

to use and discard based on the adherence to a few rules in Rust code. However, the

Rust compiler is not able to make any assumptions about the ways in which memory is

allocated, accessed, or deallocated in any code other than Rust code. If we want to

deal with dynamic memory that was not created from within Rust code, we need to use

unsafe code.

NOTE “Unsafe” is a bit of a misnomer because it does not invalidate the safety
concerns that we have in the rest of our Rust code. It simply means that the
developer is responsible for upholding Rust’s safety rules without the com-
piler strictly checking them. A more correct term might be unchecked. How-
ever, unsafe is the language keyword used to mark these blocks, so we will
continue to refer to them as unsafe. 

Unsafe code blocks allow a few operations that are forbidden in safe Rust code:

 Dereference raw pointers

 Call functions marked as unsafe

 Implement traits marked as unsafe

 Mutate static values

 Access fields of a union

There really isn’t anything beyond these five items. There are no other secret magic or

dangerous operations. Without a doubt, the most fundamental of all of these unsafe

operations is the dereferencing of raw pointers.

3.1.1 Raw pointers

As discussed in chapter 2, pointers are values that tell us the memory locations of

other values. If we imagine our computer’s main memory as a giant array of bytes,

pointers are indices into that array. The value of a pointer is a memory address, which

varies in size depending on your computer’s architecture. On most modern systems,
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memory is addressed at the byte level using 64-bit addresses, meaning that pointers

are 64-bit numbers that point to individual bytes in computer memory. 

 To dereference a pointer is to access the value that the pointer points to. Figure 3.1

shows the stack memory while a simple C program is running. It includes a character

variable x, a variable that points to the character variable y, and a character variable

that is assigned the result of dereferencing y. Imagine running this C program on a

theoretical computer that has single-byte pointer addresses. The arrow on the left rep-

resents the line in the program that has just been executed, and the diagram on the

right represents the stack memory at that point in time. 

Figure 3.1 A program’s stack memory during reference and dereference operations

0x00

0x01

0x02

0x03

0x04

0x05

0x06

0x07int main() {
    char x = 'a';
    char *y = &x;

    char z = *y;
} No code has yet been executed, so

our stack is completely empty.

'a' 0x00

0x01

0x02

0x03

0x04

0x05

0x06

0x07int main() {
    char x = 'a';
    char *y = &x;

    char z = *y;
}

We store the character 'a' in the

first position on the stack.

'a' 0x00

0x00 0x01

0x02

0x03

0x04

0x05

0x06

0x07int main() {
    char x = 'a';
    char *y = &x;

    char z = *y;
}

The next value placed on the stack

is the memory address of the

variable x. In this case, it is 0x00.

'a' 0x00

0x00 0x01

'a' 0x02

0x03

0x04

0x05

0x06

0x07int main() {
    char x = 'a';
    char *y = &x;

    char z = *y;
}

This operation is dereferencing.

The variable y holds the memory

address 0x00. We look up the

value that is stored at the address

0x00 and put it on the stack, 

referred to by the variable z.

Execution

point

This diagram displays the state
of our program’s stack memory
after the line indicated on the
left has been executed.
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The reason why this operation needs to be hidden behind unsafe blocks is very sim-

ple. Recall, from chapter 2, the second rule of Rust references: references must always

be valid. At run time, a reference and a raw pointer are identical: they are both values

that hold a memory address, which is used to look up a value in memory. The only dif-

ference is their behavior at compile time. Because Rust references have extra informa-

tion about them known by the compiler, such as their lifetimes, the compiler knows

that they are always valid and that dereferencing them is always safe. If a raw pointer is

created, it is simply an address in memory; it has no lifetime or ownership information

attached to it. The compiler has no way to validate that the memory it points to is

valid, so it is up to the programmer to validate it.

 One of the most common operations in Rust code operating between languages is

reading through a buffer of data, such as a C-style array.

fn main() {
let data: Vec<u8> = vec![5, 10, 15, 20];

read_u8_slice(data.as_ptr(), data.len());
}

fn read_u8_slice(slice_p: *const u8, length: usize) {
for index in 0..length {

unsafe {
println!("slice[{}] = {}", index,

*slice_p.offset(index as isize));
}

}
}

A Vec is analogous to a C++ std::vector or a Java ArrayList and similar to a list in

Python, although lists may hold values of different types. A u8 is an unsigned, 8-bit

integer, a single byte. Combining these as a Vec<u8>, we get a growable block of mem-

ory containing individual byte values.

 The as_ptr method is used to get a pointer to the data buffer inside of the Vec.

Getting the pointer is a completely safe operation. We only need to introduce unsafe

when we want to dereference the pointer. 

 Immutable pointers (*const) and mutable pointers (*mut) are very similar to

immutable and mutable references, respectively. If a value is behind a *const, it can-

not be mutated. If you need to mutate a value, you must use a *mut. One key differ-

ence between pointers and references in this respect is that an immutable pointer can

be cast to a mutable pointer. It is the developer’s responsibility to know when this

action is safe or not safe. 

Listing 3.1 Reading the elements of a vector using pointer arithmetic

A Vec in Rust is a growable, 
contiguous block of memory, holding
many values of the same type.

The as_ptr method 
is perfectly safe.

The two varieties of pointers 
in Rust are immutable 
pointers (*const) and 
mutable pointers (*mut).

An unsafe block is required because 
we perform two unsafe operations: 
we call the unsafe offset function 
and then dereference the pointer 
that is returned.

The offset function performs pointer
arithmetic; it requires its input to be isize

because it accepts negative offsets.
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3.2 C Foreign Function Interface

Now that we understand pointer dereferencing, we can write Rust code that commu-

nicates with C code. Reading from and writing to pointers that Rust code accepts from

C requires us to apply our knowledge of pointer operations.

 Imagine that we have an existing C application that solves simple arithmetic

expressions in Reverse Polish Notation (RPN). Currently, this program accepts

expressions containing a single operation. You have been tasked with extending the

application to support multiple operations in a single expression. This extra function-

ality should be written in Rust; however, the current C code that performs user opera-

tions like text input and output should remain in C.

 RPN is a way to write arithmetic expressions that negates the need for precedence

rules for operations. It is essentially a simple programming language that operates on

a stack machine. Elements are separated by spaces, and arithmetic operators work on

the previous two items in the expression, instead of the preceding element and follow-

ing element, as is the case with the more commonly used infix operations. Some

example expressions written in infix notation and their counterparts in RPN are,

respectively,

Infix: 3 + 4 * 12
RPN : 4 12 * 3 +

= 51

Infix: (3 + 4) * 12
RPN : 3 4 + 12 *

= 84

Figure 3.2 shows the stack that is used to calculate the result of the second RPN

expression.

 RPN avoids the ambiguity of infix notation by always operating in strictly left-to-

right order. The orders of operations for the first and second RPN expressions is dif-

ferent because the operations are literally written in a different order. It is far easier to

write a calculator that parses expressions in the RPN format because we can avoid the

complications of ordering operations and just work from left to right.

 Our C application currently takes newline-delimited integer arithmetic expres-

sions from the user on STDIN, parses the expression, and then calculates and displays

the result on STDOUT. We need to add support for multiple nested arithmetic

expressions; right now, our calculator only does one operation at a time. We could

keep all this code in C, or we could move the string-parsing code out of C and into

Rust. Since we’ve heard some nice things about Rust, let’s try using it to solve our

problem. First, let’s look at what the C code looks like.
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Figure 3.2 RPN stack used to calculate 3 4 + 12 *

3 4 + 12 *

No terms have been parsed yet,

so the stack is empty. 

3 4 + 12 *

The first number—in this case, 3—is put

onto the stack.

3

3 4 + 12 * 3

4

3 4 + 12 *

Upon encountering the addition

operator, we pop the previous

two values from the stack and

add them together.
3

4

43 + = 7

Then we push the result onto the

stack.

7

3 4 + 12 * 7

12

3 4 + 12 *

The pop, pop, operate, push

steps are identical for

multiplication, with only the

operation in the middle being

different.

7

12

127 * = 84

84

3 4 + 12 * 84

When the end of input is

reached, we pop a single value

from the stack, and that is the

answer.

84

This visualization holds the state
of the stack after the indicated
term has been evaluated.
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#include <stdio.h>
#include <string.h>

int solve(char *line, int *solution);

int main() {
char line[100];
int solution;

while (1) {
printf("> ");
if (fgets(line, 100, stdin) == NULL) {

return 0;
}

if (solve(line, &solution)) {
continue;

}

printf("%d\n", solution);
}

return 0;
}

int solve(char *line, int *solution) {
int num1, num2;
char operator;

int values_read = sscanf(
line, "%d %d %c", &num1, &num2, &operator);

if (values_read != 3) {
return 1;

}

switch (operator) {
case '+':

*solution = num1 + num2;
return 0;

case '-':
*solution = num1 - num2;
return 0;

case '*':
*solution = num1 * num2;
return 0;

case '/':
*solution = num1 / num2;
return 0;

}

return 1;
}

Listing 3.2 Simple C arithmetic calculator program

Allocates space on the stack 
of the main function

fgets reads data from 
a file—in this case, STDIN.

solve takes a pointer to the line of text read 
from STDIN and a pointer to an int, which 
solve writes the solution value to.

The format string here will 
look for an integer, followed 
by a single character, followed 
by another integer. These 
values will be used to 
compute the math expression.

In this switch statement, we calculate the 
result of the provided math expression 
and write the result to the integer 
pointed to by the solution pointer. Recall 
that solution points to an int variable on 
the stack of the main function.



673.2 C Foreign Function Interface

char line[100]; allocates space on the stack of the main function to store up to 100

characters for the data we’re going to read in from the user. Since we don’t need to

access multiple lines of text at once, we can keep reusing the same memory buffer

over and over again. The fgets function will clear it when it reads data from STDIN.

 fgets reads the data from STDIN and takes a char pointer as its first argument,

which should point to the allocated memory where the data from the file will be read

to. The memory must have allocated space for at least as many characters as the sec-

ond argument. Because we allocated space for 100 characters, we give 100 as the sec-

ond argument. C pointers and their associated memory don’t contain data on where

the allocated memory region ends, so for many functions, the developer needs to

explicitly specify the size of memory regions, which ensures that fgets never writes

past the end of our buffer.

 solve returns an int, which is a status code. 0 means the function worked cor-

rectly, and 1 means that the string did not parse as expected.

 If we put this code into a file named calculator.c and run it, it will solve simple

arithmetic problems as expected:

$ gcc calculator.c -o calculator
$ ./calculator
> 3 40 *
120
> 120 3 /
40
> 40 1345 *
53800
> 53800 3 /
17933

It does great with these simple expressions, but what happens if we try to add extra

operations?

> 3 40 * 2 -
120
> 10 10 * 10 *
100
> 10 10 * hello!
100

Anything after the first three items is ignored. Remember that we have been tasked

with adding support for multiple operations in a single expression to this calculator.

Let’s see whether we can extract a key component from it and move it into Rust! The

first step is to identify what we want to extract. Given that our program here only has

two functions and one of them is the main function, we should start by moving the

solve function into Rust.

 Let’s start a new Rust project with the Cargo command. In previous examples, we

used cargo new PROJECT_NAME, but that creates a new project with a main.rs entry

point—something that can run directly as an executable. We’re not creating an
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executable; instead, we want to create a library. So, we need to provide an additional

flag to cargo new to indicate this desire:

cargo new --lib calculate

Open the newly created calculate/src/lib.rs file, and we can begin. Recall that

when creating an executable, newly created main.rs files include the “Hello world!”

program by default. Similarly, when creating a library, Cargo will fill our lib.rs file

with basic unit test scaffolding, which we can use to validate the functionality of our

program. We go over cross-language testing in more detail in chapter 7; for now, just

delete the contents of this file.

 When we bring over the functionality of the solve function from C to Rust, we

need to provide our C code with a function that has the same signature as the old

solve function. The signature of a function refers to the types of all the values that a

function accepts as parameters and returns, as well as the semantic meanings of those

values. Recall the signature of our C function:

int solve(char *line, int *solution)

For our C code to call a Rust function, we need to write a Rust function that accepts a

char pointer and an int pointer as parameters and returns an int. Here is what that

same signature will look like in Rust:

fn solve(line: *const c_char, solution: *mut c_int) -> c_int

We can already glean more information from our Rust function’s signature than from

the signature of the C function. The Rust function tells us that the value of solution

may be modified inside the function and the value of line will not be modified. The C

code provides no indication, other than reading the code, that solution will be mod-

ified by the solve function. A developer can always add comments, of course, but

comments may be inaccurate or become out of date.

 The c_char and c_int types in the function signature are not built into the Rust

standard library; they need to be imported from the libc crate. Crates are the Rust term

for packages or libraries—collections of functions and types that can be used by others

to perform certain tasks. The libc crate provides raw FFI bindings to the C standard

library. The C standard does provide some relative sizing guarantees. For example, int

is always at least as large as short int, but beyond that, a C int is platform specific. libc

abstracts over some of this platform-specific nature by providing Rust types for the C

primitives, whose sizing is determined by the platform on which they were compiled.

Since many Rust programs don’t need to interact with C libraries, this functionality is

not included in the standard library and is instead in an external library.

3.2.1 Including a crate

When we’ve used Cargo in the past, it’s been to create new Rust packages or to com-

pile and run a Rust program. However, Cargo can do so much more than that. Cargo

can also download, compile, and link dependencies and perform many other
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functions that would normally require lots of configuration in C or C++ programs. It is

an all-in-one program for interacting with Rust. For now, we’re going to ask Cargo to

include libc when compiling our calculate crate.

 Cargo’s configuration file is Cargo.toml. All the information that Cargo needs

about how to compile a crate is contained herein. It contains compiler feature sets to

activate, third-party crates to download/compile and their versions, conditional com-

pilation flags, and information that you need to include if you’re creating a crate you

want others to be able to use (e.g., your contact information, readme, version infor-

mation, and more).

 Open calculate/Cargo.toml in your editor. The content should be prepopulated

by cargo new and should look something like the following listing.

[package]
name = "calculate"
version = "0.1.0"
authors = ["You <you@you.com>"]
edition = "2018"

# See more keys and their definitions at
# https://doc.rust-lang.org/cargo/reference/manifest.html

[dependencies]

The [dependencies] section is the most commonly used section of the file for most

Rust developers. Under this line, we type the name and version number of the crate we

wish to include. Subsequently, when we use Cargo commands that compile our Rust

program, Cargo will download the appropriate version of the crates we requested, com-

pile them, and link them with our crate. We don’t need to worry about setting compiler

flags. There is no separate step; just write the crates you want, and Cargo will get them.

To search for available crates, see crates.io. When Cargo is used to build and publish

packages, they go (by default) to crates.io. Here you can see all of the publicly available

crates that you can use when building Rust applications and crates of your own.

 To include libc in our calculate crate, let’s add a line under the [dependencies]

section. Dependencies are specified with the name of the package, an equals sign (=),

and the version of the package you’d like to use. At the time of this writing, the latest

release of libc was 0.2.80, so let’s use that version. The Cargo.toml file after this

addition should look like the following:

[package]
name = "calculate"
version = "0.1.0"
authors = ["You <you@you.com>"]
edition = "2018"

# See more keys and their definitions at
# https://doc.rust-lang.org/cargo/reference/manifest.html

Listing 3.3 Default Cargo configuration file

https://crates.io
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[dependencies]
libc = "0.2.80"

We can include as many dependencies as we want here, but for now, we only need

libc.

 After making this addition, open the calculate/src/lib.rs file once again, and

let’s try writing a basic solve function.

use libc::{c_char, c_int};

fn solve(line: *const c_char, solution: *mut c_int) -> c_int {

0

}

We discuss the modules system in chapter 5, but for now, just know that use includes

items from other crates. A use statement isn’t necessary for each item that we want to

include, but if we left c_char out from this statement, we would need to refer to it as

libc::c_char in our functions signature. The implicit return without a semicolon

rule may seem odd at first, but when it is combined with some of Rust’s other expres-

sions, it becomes invaluable.

 If we compile this code, we will see that Cargo includes the libc crate. Since we’re

not creating an executable that can be run directly, we can use the cargo build com-

mand to compile our crate, without trying to run it. The cargo run command, which

we used in earlier examples, does the same thing as cargo build, but it will run the

resulting executable if the crate is an executable:

$ cargo build

Updating crates.io index

Compiling libc v0.2.80

Compiling calculate v0.1.0 (/home/you/calculate)

Finished dev [unoptimized + debuginfo] target(s) in 5.81s

Now that we’ve compiled our solve function, let’s see if we can call it from our C

code!

3.2.2 Creating a dynamic library with Rust

If you’ve done much programming beyond “Hello world!” you’ve interacted with

libraries before. Libraries are collections of functions, types, variables, or other things

depending on what your programming language supports, which are packaged up

together to accomplish some functionality so you won’t need to reimplement it each

time you want to use it. For example, if you want to perform HTTP requests in

Python, you might use the requests library, or in C, you could use libcurl. It’s much

Listing 3.4 The most basic solve function in Rust that compiles

The use statement includes types/
functions/variables from other

Rust crates or modules.

The last expression in a function 
is treated as a return value if it 
has no semicolon after it, so this 
line is equivalent to return 0;.
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easier to import a library to make HTTP requests than it is to use raw sockets and

read/write system calls.

 Different programming languages have different formats for libraries. For exam-

ple, Python libraries are simply collections of Python source code files, which the

Python interpreter reads when imported. In C, there are a few different types of librar-

ies, but the most commonly used on Unix-like operating systems, and the type that

we’ll be focusing on here, is the dynamic library.

 We need to take several steps before our Rust solve function can be called from

our C program:

1 Tell Cargo to compile our crate as a dynamic library that the C linker

understands.

2 Add our newly created dynamic library to the linker search path.

3 Mark our Rust solve function so that the Rust compiler knows to compile it

with C calling conventions.

4 Recompile our C program using the solve function from our Rust dynamic

library.

Let’s walk through these steps.

CREATING THE DYNAMIC LIBRARY

When Cargo compiles a Rust crate, by default, it doesn’t produce something that a C

compiler knows how to use. It generates something called an rlib file, which is a type

of file specific to the Rust compiler and only used as an intermediate artifact that will

be later used in some other Rust compilation. Instead of an rlib, we want Cargo to gen-

erate a dynamic library that the C linker knows how to use. We need to make another

edit to our Cargo.toml file. This time we will tell it to output something compatible with

C. Add these lines to your Cargo.toml file above the [dependencies] section:

[lib]
crate-type = ["cdylib"]

Cargo can generate many different types of crates, but the most common are the

default rlib and the cdylib, which will cause Cargo to build a dynamic library com-

patible with native C programs. After making this addition to the Cargo.toml file,

rerun cargo build.

ADDING THE DYNAMIC LIBRARY TO THE LINKER SEARCH PATH

When Cargo compiles anything, it goes into a directory called target. Inside of target,

Cargo will create subdirectories for different build profiles. For now, this is just to

debug, since by default Cargo produces binaries with debugging information and no

optimizations, but we will look at how to create optimized builds later. You should see

a few files and folders if you look in the target/debug directory, but the most important

one is our new dynamic library, libcalculate.so. We need to put our dynamic library

file in a location that the C compiler and linker will search for when running our

calculator program. We can do so by creating a link in the /lib directory that points to



72 CHAPTER 3 Introduction to C FFI and unsafe Rust

our library file. The /lib directory stores dynamic library files, and it is searched by the

C compiler, linker, and the operating system when starting our program:

$ ln -s $(pwd)/target/debug/libcalculate.so /lib/libcalculate.so

Now that we have our library file in a proper location, let’s try to compile our C pro-

gram against it. First, remove the existing solve function, shown in listing 3.2, from

our calculator.c file. The new contents of the file are shown in the following listing.

#include <stdio.h>
#include <string.h>

int solve(char *line, int *solution);

int main() {
char line[100];
int solution;

while (1) {
printf("> ");
if (fgets(line, 100, stdin) == NULL) {

return 0;
}

if (solve(line, &solution)) {
continue;

}

printf("%d\n", solution);
}
return 0;

}

Now we should be able to compile our C program and link it against our Rust library.

We can tell the compiler that we want to link against the libcalculate library by pro-

viding the -lcalculate argument:

$ gcc calculator.c -o bin -lcalculate
/usr/bin/ld: /tmp/ccwBuRCw.o: in function `main':
calculator.c:(.text+0x13f): undefined reference to `solve'
collect2: error: ld returned 1 exit status

Hmm, it doesn’t look like that worked. The error says that we’re calling the solve

function in our main function, but it doesn’t see where a function called solve is

defined. Consequently, the C linker can’t find our Rust solve function. Let’s look at

how to fix that.

MARKING THE SOLVE FUNCTION AS C-LINKABLE

Even though we asked Rust to compile the calculate crate as a cdylib, it doesn’t

export every function and type in a C-compatible format. It only exports the specific

Listing 3.5 C calculator program without the solve function

It’s important to keep the forward 
declaration of solve before the main 
function. This tells the C compiler that 
we’re eventually going to define a 
function that matches the signature. 
We provide this definition by linking 
our Rust solve function.
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functions and types that we ask it to. Three steps are required to make a Rust function

callable from C. We need to

 Disable name mangling.

 Mark the function as public.

 Tell the Rust compiler to use C calling conventions for the function.

The following listing shows a properly annotated function.

#[no_mangle]
pub extern "C" fn solve(

line: *const c_char, solution: *mut c_int) -> c_int {
0

}

A number of new elements appear here, and they all have a slightly different purpose;

let’s look at them one at a time.

 The first one, #[no_mangle], is a function attribute macro, which instructs the

compiler to not perform name mangling on this function. If you’ve done much C++

development, you may be familiar with the concept of name mangling. If not, name

mangling refers to a process that the compiler uses to ensure that function and type

names are unique inside of a system library or executable. On Unix-like systems, exe-

cutables and system libraries do not have namespaces. Thus, if we define a solve func-

tion in our executable, there can only ever be a single solve function across all

libraries that we’re using and across all files. If any library has an internal function

called solve, it will conflict with the one we’re trying to create.

 To overcome this problem, the Rust compiler puts extra information into the

name of the symbols within it, which ensures that no symbol names overlap. If we

leave name mangling enabled, our Rust solve function will be given a name like

_ZN9calculate5solve17h6ed798464632de3fE. The method that the compiler uses to

create these unique names is unimportant for our purposes here. Just know that pre-

dicting these mangled names is very difficult and unwieldy. Therefore, if we expect to

call any Rust functions from C, which has no understanding of Rust’s name-mangling

scheme, we must use no_mangle to disable it for those specific functions.

 The next new bit of code, pub, is a very common Rust keyword. It tells the Rust

compiler that the symbol should be exported outside of the module in which it is

defined. By default, all symbols in Rust are private and unexported. The way to export

a function or type is to add the pub keyword before its definition, as we have done

here.

 Finally, we have extern "C", which tells Rust to generate the solve function using

C-compatible calling conventions. By default, the Rust compiler’s calling conventions

are not strictly compatible with C’s. Rust supports a number of different calling conven-

tions, but the most commonly used is the default Rust convention, followed by "C".

Listing 3.6 Rust solve function that can be exported as compatible with C
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 Figure 3.3 breaks down what each of these new pieces of syntax is responsible for.

Now that we’re generating a function that can be called by C, let’s make our Rust

library and our C application work together.

RECOMPILING THE C PROGRAM AGAINST OUR RUST DYNAMIC LIBRARY

We can start by rebuilding our Rust library and recompiling our C program:

$ cargo build
$ gcc calculator.c -o bin -lcalculate

It works! Now let’s see if we can run our new dynamically linked calculator program:

$ ./calculator
> 3 4 +
32686
> 4 10 +
32686
> 10 1000000 *
32686
> hello
32686

So, our program runs, but it seems that we’ve lost the ability to do math. Our calcula-

tor always outputs an unpredictable number because we never assign a value to our

solution variable. Since we’ve replaced our solve function with a no-op return 0,

that makes sense. Let’s write solve in Rust! Before we do any string parsing, we should

make sure that we can communicate values as expected between Rust and C. Since

solve takes a pointer to a solution out parameter, let’s try writing a value to that.

Because we’re dereferencing a pointer to do this write, we’ll need to wrap the opera-

tion in an unsafe block:

#[no_mangle]
pub extern "C" fn solve(

line: *const c_char, solution: *mut c_int) -> c_int {
if solution.is_null() {

#[no_mangle]

Function attribute macro

Disables name mangling

pub extern "C" fn solve 

Exports function publicly

Uses C calling convention
Figure 3.3 Anatomy of a 

C-compatible function declaration

Because we are reading memory that we never 
wrote a value into, this number may be 
different each time this program is run.

The is_null 
method
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return 1;
}

unsafe {
*solution = 1024;

}

0
}

Recall that one of the reasons Rust requires pointer dereferences to happen within

unsafe blocks is due to the possibility of null pointers. Before dereferencing

untrusted pointers, we should check for null pointers. Dereferencing a null pointer in

Rust is undefined behavior. The is_null method is built into the pointer primitive

type. It cannot fail or cause an exception, like calling a method on a null object in

Python or Java might.

 Now, if we recompile our Rust code and rerun our executable, we should see the

expected results:

$ cargo build
$ ./calculator
> 3 10 *
1024
> 1000 52 /
1024
> 1024 1 *
1024

Not that they’re necessarily all correct results, but they are results. Notice that we did

not need to recompile the C program to get the new results to show up in our execut-

able. Because libcalculate.so is a dynamic library, it’s loaded by the operating system

each time we run calculator. So we can update our Rust code without needing to

rerun the C compiler.

 Now that we can write to C, we should try to read the string value that we’re getting

from C. C strings are contiguous blocks of platform-specific character types, terminated

by a null character. Since we’re only reading from our C string and not changing it at

all, we can create an &str read-only string slice that points to the same memory created

in our C main function. By doing this, we can avoid double-allocating the string. This is

one of the great flexibilities of the multiple string types in Rust. If we only had the one

String type, it could only be constructed by performing heap allocations in Rust code.

This means that any time we want to use a string from C or any other language, we’d

need to reallocate it, which would waste program memory and time.

 There is a small overhead to creating string slices from untrusted input; we need to

validate that they are valid UTF-8 before they can be constructed. All Rust strings are

UTF-8, given that all string constructors either perform this validation or are unsafe

and expect the developer to have done some other method of validation. Since our C

strings may not contain UTF-8, we’re going to perform that validation when we con-

struct our strings.

Inside of the unsafe block, Rust’s 
syntax for pointer dereferencing 
is the same as C’s.
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 We need to include another use statement to bring in a Rust type called CStr. CStr

represents a C string that is borrowed memory from C. Recall the memory layout of

line: it is a stack-allocated char array. Rust can never take ownership of this value,

because if it tried to deallocate it, the memory would be deallocated from the stack of

our C program. This is not possible and would probably result in a segmentation fault.

Instead, our Rust program is just borrowing the C string, read-only, and all references

to it will be dropped when solve returns. So, CStr is being used as a temporary value

to facilitate the creation of an &str:

use libc::{c_char, c_int};
use std::ffi::CStr;

#[no_mangle]
pub extern "C" fn solve(

line: *const c_char, solution: *mut c_int) -> c_int {
if line.is_null() || solution.is_null() {

return 1;
}

let c_str = unsafe { CStr::from_ptr(line) };
let r_str = match c_str.to_str() {

Ok(s) => s,
Err(e) => {

eprintln!("UTF-8 Error: {}", e);
return 1;

},
};

println!("line: {}", r_str);

unsafe {
*solution = 1024;

}

0
}

If we run our calculator program now, we can see that the line string is making its way

into Rust:

$ cargo build
$ ./calculator
> 3 40 *
line: 3 40 *

1024

We can even validate that we’re not reallocating the string, by comparing the line

pointer we’re given from C to the data pointer in r_str. Add the following line after

r_str is created:

println!("r_str.as_ptr(): {:p}, line: {:p}", r_str.as_ptr(), line);

The from_ptr function 
is unsafe because it is 
the caller’s responsibility 
to ensure that the 
pointer given is nonnull 
and the data it points to 
adheres to the expected 
structure of a C string.

The match expression in Rust is like an 
extremely powerful sibling of switch. In 
addition to matching on values, it can 
perform destructuring operations as it’s 
doing here. The to_str function returns a 
Result value, which is either a successful Ok 
value or an Err value. To extract the success 
case, we need to use match, as is done here.
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The {:p} placeholder in the format string tells println! to format these values as

memory addresses:

$ cargo build

$ ./calculator

> 3 40 *

r_str.as_ptr(): 0x7fff78acb9b0, line: 0x7fff78acb9b0

line: 3 40 *

1024

We can see that they both have the same memory address, meaning that r_str wasn’t

reallocated on the heap; it’s completely using borrowed memory from our C code.

This won’t make a huge difference in our simple program, but in larger programs

with larger data being passed back and forth, it’s important to know that we can effec-

tively share memory between C and Rust.

 Now that we have the boilerplate for communication between our C and Rust

code, we can move on to solving the problem in Rust!

3.2.3 Solving arithmetic expressions in Rust

We currently have a solve function in Rust that does a lot of work with our C types

that a normal Rust function doesn’t do. It turns the C string into a Rust string, it writes

to an int pointer as an out parameter, and it communicates an error state by return-

ing an int. Ideally, we want to separate the code that does this FFI work between C

and Rust from the code that contains our business logic. If we write a normal Rust

function that has zero unsafe or FFI concerns, we could use it for other purposes later

on down the line. We could call it from normal Rust code or from other languages,

but if we tie it directly to our solve function, which is written especially for talking to

C, we can’t do any of that. Let’s start a new function in the same file called evaluate,

which will take in a string reference and return a result. The result communicates the

success or failure of an expression’s evaluation. We’ll also create an Error enum for it,

which we’ll leave empty for now.

enum Error {

}

fn evaluate(problem: &str) -> Result<i32, Error> {

Ok(1)

}

We can update our solve function to use the new evaluate function to get the result

that it will send back to our C code. This is also a good time to convert the Rust Result

type into our int return code.

Listing 3.7 Basic evaluate function
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#[no_mangle]
pub extern "C" fn solve(

line: *const c_char, solution: *mut c_int) -> c_int {
if line.is_null() || solution.is_null() {

return 1;
}

let c_str = unsafe { CStr::from_ptr(line) };
let r_str = match c_str.to_str() {

Ok(s) => s,
Err(e) => {

eprintln!("UTF-8 Error: {}", e);
return 1;

}
};

match evaluate(r_str) {
Ok(value) => {

unsafe {
*solution = value as c_int;

}
0

}
Err(e) => {

eprintln!("Error");

1
}

}
}

We should also make sure that our program is still functioning as expected. So, go

ahead and recompile the Rust library and rerun the calculator. We should see all

expressions evaluate to 1 since that’s what’s being returned from evaluate:

$ cargo build
$ ./calculator
> 3 10 *
1
> 1000 52 /
1
> 1024 1 *
1
> hello
1

Now that we have that sorted, we shouldn’t need to touch our solve function for a

while. We can focus our attention on implementing evaluate. The first thing we need

to do is split up the input on space characters and examine each piece separately. This

is easily accomplished using the .split function available on &str values in Rust:

fn evaluate(problem: &str) -> Result<i32, Error> {
for term in problem.split(' ') {

Listing 3.8 Updated solve function that calls evaluate
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println!("{}", term);
}

Ok(1)
}

If we run this code, we should be able to verify that we’re splitting up the input on

spaces:

$ cargo build
$ ./calculator
> 3 4 *
3
4
*

1

Next, we need to determine if the term that we’re looking at is an operator, in which

case we need to do some math with it, or a number, in which case we should store it

somewhere for future math. We’ll defer that “store somewhere” for just a moment

until we get the parsing correct. We can use the match expression in a way very similar

to the switch statement in C to determine if the string in the loop is an operator. We

can add some simple prints to ensure that we’re parsing the terms as expected:

fn evaluate(problem: &str) -> Result<i32, Error> {
for term in problem.split(' ') {

match term {
"+" => println!("ADD"),
"-" => println!("SUB"),
"*" => println!("MUL"),
"/" => println!("DIV"),
other => println!("OTHER {}", other),

}
}

Ok(1)
}

The other variable is valid inside of the block to the right of the “big arrow” (=>) on this

line. other is not a keyword; it’s just the name of a variable that we’re creating. other’s

block of the match expression will only run if no other blocks match the value provided.

In our case, we only run the other block if the term does not equal any of +-*/.

 If we run this code, we will get some surprising results:

$ cargo build
$ ./calculator
> 3 4 *
OTHER 3
OTHER 4
OTHER *

1

By using a variable name here 
instead of a string literal, we 
create a variable called other.
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If our evaluate function was working correctly, we should expect the output to look

like this:

> 3 4 *
OTHER 3
OTHER 4
MUL
1

But it seems that our program is not parsing the final term correctly, it’s only parsing

the * operator when it is not the final term in the expression. Let’s add another

println!, this one before our match expression. Up until this point, we’ve been using

the {} placeholder for printing all values. It uses the Display formatter, which is

intended to display data in an end user–appropriate form. We’re going to change it

up slightly by using the Debug formatter, which provides more detailed output. You

can get the Debug representation of a value by using the {:?} placeholder:

fn evaluate(problem: &str) -> Result<i32, Error> {
for term in problem.split(' ') {

println!("Term - {:?}", term);
match term {

"+" => println!("ADD"),
"-" => println!("SUB"),
"*" => println!("MUL"),
"/" => println!("DIV"),
other => println!("OTHER {}", other),

}
}

Ok(1)
}

If we run our program again, the problem becomes clear:

$ cargo build
$ ./calculator
> 3 4 *
Term - "3"
OTHER 3
Term - "4"
OTHER 4
Term - "*\n"
OTHER *

1

There is a trailing newline character in the final term of our expression. We can

remove this from the problem string by using the .trim method, which removes lead-

ing and trailing whitespace. Let’s see if adding .trim gives us the expected output.

The evaluate function should now look like the following:

fn evaluate(problem: &str) -> Result<i32, Error> {
for term in problem.trim().split(' ') {
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match term {
"+" => println!("ADD"),
"-" => println!("SUB"),
"*" => println!("MUL"),
"/" => println!("DIV"),
other => println!("OTHER {}", other),

}
}

Ok(1)
}

And here is the output:

$ cargo build
$ ./calculator
> 3 4 *
OTHER 3
OTHER 4
MUL
1

Since we’re using a few nested methods on our input string, let’s quickly check to see

whether we’re still using borrowed memory from the C stack. Remember that we veri-

fied that the &str that we pass to the evaluate function is shared memory from the C

stack and not reallocated within Rust. We can use the {:p} formatter and the .as_ptr

method to get the memory address of problem and term:

fn evaluate(problem: &str) -> Result<i32, Error> {
println!("problem: {:p}", problem.as_ptr());

for term in problem.trim().split(' ') {
println!("term: {:p} - {:?}", term.as_ptr(), term);
match term {

"+" => println!("ADD"),
"-" => println!("SUB"),
"*" => println!("MUL"),
"/" => println!("DIV"),
other => println!("OTHER {}", other),

}
}

Ok(1)
}

If the memory is still being shared from the C stack, problem and the first value of

term should point to the same location in memory, and subsequent values should be

offset by the number of characters in the substring. Running this validates our hypoth-

esis that the memory is still shared from C:

$ cargo build
$ ./calculator
> 3 4 *
problem: 0x7ffc117917b0

The exact addresses shown in the output 
will be different on your computer and may 
be different each time the program is run.
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term : 0x7ffc117917b0
OTHER 3
term : 0x7ffc117917b2
OTHER 4
term : 0x7ffc117917b4
MUL
1

Our memory is still shared! We’ve never reallocated our string from C’s stack. Since

we don’t need to change the value inside the string buffer, only the part of the string

buffer we’re viewing, we never need to reallocate it. With Rust’s &str type, we can per-

form as many substring operations as we want, and we never need to reallocate. This

ability is a huge boon for memory and time efficiency. It’s inefficient to have many

copies of the same data sitting around, and it takes time to reallocate and copy string

buffers that will only be used once.

 Next, we need to take the terms that are not operators and try to parse them as

integers. We can do this using the .parse method, available on strings. .parse is

generic over its return type, meaning it could return an int of varying sizes, a floating-

point number, or a great deal of other types. We need to tell the parse method the

return type we want, which will determine the parsing logic it will use. We’ll also need

to add a variant to our Error enum to account for the possible failure of .parse:

enum Error {
InvalidNumber,

}

fn evaluate(problem: &str) -> Result<i32, Error> {
for term in problem.trim().split(' ') {

match term {
"+" => println!("ADD"),
"-" => println!("SUB"),
"*" => println!("MUL"),
"/" => println!("DIV"),
other => match other.parse::<i32>() {

Ok(value) => println!("NUM {}", value),
Err(_) => return Err(Error::InvalidNumber),

}
}

}

Ok(1)
}

Running this yields no surprises:

$ cargo build
$ ./calculator
> 3 4 *
NUM 3
NUM 4
MUL
1
> 3 4 hello

The memory location of term and 
problem is the same, so the memory is 
still being shared for our string buffers.

The memory location has changed by 2 
bytes, a single byte for the 3 character and 
another byte for the space character.
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NUM 3
NUM 4
Error

At this stage, we want to begin exploring how we might start doing math. Since our

calculator is parsing RPN expressions, we need a simple stack data structure, imple-

mented on top of a double-ended queue. Rust’s standard library provides a double-

ended queue in the form of the VecDeque type. A VecDeque is a double-ended queue

backed by a standard Vec growable array. The main difference between the more gen-

eral Vec and VecDeque is that VecDeque provides double-ended operations, like

push_front, push_back, pop_front, and pop_back. By comparison, Vec only provides

push and pop methods, which provide first in, first out (FIFO) ordering. Since we’re

implementing a stack, we need to use the push_front and pop_front methods from

VecDeque to provide last in, first out (LIFO) ordering. We’re going to create a wrapper

type around VecDeque to provide some functionality that is specific to the needs of our

RPN solver. This type is called RpnStack. Also, since VecDeque is not used quite as

commonly as Vec, we’ll need to import it explicitly from the standard library:

use std::collections::VecDeque;

#[derive(Debug)] //
struct RpnStack {

stack: VecDeque<i32>,
}

#[derive] is a macro that instructs the compiler to generate code for a struct or

enum. In this case, it’s an implementation of the Debug trait, which allows us to print

out our RpnStack using the Debug formatter that we introduced earlier. Although it’s

possible to manually write this code, it’s easier (especially for types with many fields)

to allow the compiler to generate it automatically.

 Let’s add some methods to perform the standard stack operations of push and pop:

they add a new number to the top of the stack and remove the top number from the

stack, respectively. We’ll also add an Error variant to mark the error of popping from

an empty stack:

enum Error {
InvalidNumber,
PopFromEmptyStack,

}

impl RpnStack {
fn new() -> RpnStack {

RpnStack {
stack: VecDeque::new(),

}
}

fn push(&mut self, value: i32) {
self.stack.push_front(value);

}

Methods for a struct or 
enum go into impl blocks.

It is convention to write a new method that accepts all 
required parameters for constructing an instance of a 
type. Rust does not have language-level support for 
constructor functions like C++ or Java; a constructor 
function is just a normal function.

Methods that take in a parameter 
called self operate on an individual 
instance of the type.
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fn pop(&mut self) -> Result<i32, Error> {
match self.stack.pop_front() {

Some(value) => Ok(value),
None => Err(Error::PopFromEmptyStack),

}
}

}

impl blocks contain the methods that can be called on a given type. If you’re coming

from a language like Python or Java, where function definitions live within the same

block as the class definition, this may seem odd, but the flexibility that comes from

having separate impl blocks is very worthwhile.

 Note that push and pop have an &mut self parameter on them, and new does not.

push and pop are methods that operate on a specific instance of RpnStack, whereas new

is a function that does not take an instance as its input. Functions within impl blocks are

similar to static methods in Java or class methods in Python. impl blocks can contain

both methods and functions; the only difference is the presence or absence of the lead-

ing self parameter, similar to Python methods, which have a leading self parameter.

In languages like Java, JavaScript, Ruby, and C++, a self or this variable may be avail-

able within methods, but it is not marked as an explicit parameter. It is required in Rust

because of Rust’s explicit rules around mutability and ownership control. self param-

eters can take many forms: they can be owned self values, immutable references

(&self), or, as we see here, mutable self references (&mut self). The &mut self is

required for both methods because they both mutate the stack field of our RpnStack

value. You can only call push or pop if you have a mutable reference to the RpnStack.

 With these methods, we should be able to implement our evaluate function. We

can start by pushing integer values onto the stack and printing them out afterward.

Also, instead of always returning 1, we can start returning the top value on the stack:

fn evaluate(problem: &str) -> Result<i32, Error> {
let mut stack = RpnStack::new();

for term in problem.trim().split(' ') {
match term {

"+" => println!("ADD"),
"-" => println!("SUB"),
"*" => println!("MUL"),
"/" => println!("DIV"),
other => match other.parse() {

Ok(value) => {
stack.push(value);
println!("STACK: {:?}", stack);

},
Err(_) => return Err(Error::InvalidNumber),

}
}

}

let value = stack.pop()?;
Ok(value)

}

We use the Type::function() syntax to 
call a function associated with a type.

Explicitly hinting that 
parse should return an i32 
is no longer necessary.

We use the instance.method() 
syntax to a method on a 
specific instance of a type.

Recall that the ? operator returns an error early from a 
function if the expression it’s applied to is an Err variant. pop 
returns an error when the stack is empty, so this ? operator 
is necessary to forward that possible error to the caller.
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Note that we no longer need to explicitly hint that parse should return an i32. We

take the returned value variable and immediately pass it into the push method. This

method only accepts an i32 as its input, so the compiler will reason that parse must

return an i32 to be valid. The Rust compiler works very hard to try to save you from

writing types over and over again.

 Let’s see if our stack is working as expected:

$ cargo build
$ ./calculator
> 3 4 *
STACk: RpnStack { stack: [3] }
STACk: RpnStack { stack: [4, 3] }
MUL
4
> *
MUL
Error

Now that we have numerical storage, we should be able to implement addition.

Remember that, in RPN math, we need to pop two values off of the stack, add them

together, and put the result back onto the stack:

fn evaluate(problem: &str) -> Result<i32, Error> {
let mut stack = RpnStack::new();

for term in problem.trim().split(' ') {
match term {

"+" => {
let y = stack.pop()?;
let x = stack.pop()?;

stack.push(x + y);
}
"-" => println!("SUB"),
"*" => println!("MUL"),
"/" => println!("DIV"),
other => match other.parse() {

Ok(value) => stack.push(value),
Err(_) => return Err(Error::InvalidNumber),

}
}

}

let value = stack.pop()?;
Ok(value)

}

If we run this program now, we can compute arbitrarily nested addition expressions:

$ cargo build
$ ./calculator
> 3 4 +
7
> 100 300 + 200 +
600

Our stack is in LIFO order, so the top item on the stack 
is the second element in the expression. Thus, we need 
to pop them from the stack in “backward” order of y 
and then x. The results are the same for addition but 
try swapping these lines for subtraction or division.
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It should be easy enough to provide similar implementations for the other operators.

fn evaluate(problem: &str) -> Result<i32, Error> {
let mut stack = RpnStack::new();

for term in problem.trim().split(' ') {
match term {

"+" => {
let y = stack.pop()?;
let x = stack.pop()?;

stack.push(x + y);
}
"-" => {

let y = stack.pop()?;
let x = stack.pop()?;

stack.push(x - y);
}
"*" => {

let y = stack.pop()?;
let x = stack.pop()?;

stack.push(x * y);
}
"/" => {

let y = stack.pop()?;
let x = stack.pop()?;

stack.push(x / y);
}
other => match other.parse() {

Ok(value) => stack.push(value),
Err(_) => return Err(Error::InvalidNumber),

}
}

}

let value = stack.pop()?;
Ok(value)

}

And it seems to work as expected:

$ cargo build
$ ./calculator
> 3 4 * 10 + 20 -
2
> 3 4 *
12
> 3 4 + 10 * 20 -
50
> 100 2 /
50

Listing 3.9 Using evaluate for all four arithmetic operations
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> 100 5 /
20
> /
Error

The program is so close to completion. The largest gap in functionality right now is

due to error messages not surfacing to the user outside of Error. This is less than help-

ful; we should try printing out a message with specific information about the error. We

could add another match to the solve function to inspect the variant of our Error, but

this method is less than ideal. It may seem okay for our small program, but what if

evaluate is called in multiple places, and they all want to log the same error message

when an error occurs? We need to centralize the error messages that our Error struct

can generate. The standard way to do this is by using the Display trait.

3.2.4 The Display trait

Traits in Rust are very similar to interfaces in Java or Go or abstract classes in C++.

They are definitions of functionality that any type might implement so that those

types can be handled in similar ways. For example, numeric types all implement the

Add trait in the standard library, indicating that addition can be performed on them.

We’re going to look at the Display trait, which we’ve been using this whole time with-

out realizing it! Every time we used the println! macro and the {} placeholder to

print a value, we were using the Display implementation for that value.

 Let’s see how we might write the “Hello world!” program using the Display trait.

use std::fmt::{Display, Formatter};

struct Hello {}

impl Display for Hello {
fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {

write!(f, "Hello world!")
}

}

fn main() {
let x = Hello {};
println!("{}", x);

}

Implementing the Display trait for custom types is very straightforward. Outside of

the type signature for the fmt function, it’s basically just replacing println! with

write! and adding a leading f argument. f is a Formatter struct, which may contain a

handle to stdout (for println!), stderr (for eprintln!), or a string (for format!).

Listing 3.10 “Hello World!” with Display

Trait implementations 
are always written as 
impl Trait for Type.

Whenever you 
implement the Display 
trait, you must 
implement the fmt 
function with this exact 
signature. We could 
import Result from the 
fmt package as well to 
shorten the return type, 
but it often conflicts 
with the normal Result 
type, so it’s generally 
not imported. We use 
the full path instead.

The write! macro uses the same 
format string with placeholder 
syntax as println!/format! and 
friends. The macro returns a 
std::fmt::Result, so we omit the 
semicolon on this line to ensure 
the result is returned from our 
fmt function.

We use the same {} placeholder that we’ve been using 
throughout the book. The only difference is that we can now use 
it on our own type instead of just on standard library types.
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 Now, let’s implement the Display trait for our Error type.

use std::fmt::{Display, Formatter};

enum Error {
InvalidNumber,
PopFromEmptyStack,

}

impl Display for Error {
fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {

match self {
Error::InvalidNumber => write!(

f, "Not a valid number or operator"),
Error::PopFromEmptyStack => write!(

f, "Tried to operate on empty stack"),
}

}
}

NOTE It is highly recommended that you provide a Display implementation
for error types.

Next, we can update our solve function to take advantage of this new Display imple-

mentation.

#[no_mangle]
pub extern "C" fn solve(

line: *const c_char, solution: *mut c_int) -> c_int {
if line.is_null() || solution.is_null() {

return 1;
}

let c_str = unsafe { CStr::from_ptr(line) };
let r_str = match c_str.to_str() {

Ok(s) => s,
Err(e) => {

eprintln!("UTF-8 Error: {}", e);
return 1;

}
};

match evaluate(r_str) {
Ok(value) => {

unsafe {
*solution = value as c_int;

}
0

}
Err(e) => {

eprintln!("Error: {}", e);

Listing 3.11 Display implementation for the Error type

Listing 3.12 solve function updated to print out error messages

This line is the only one that needs 
to change. We print out our error 
value with the {} placeholder.
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1
}

}
}

We’ve done it! We now have a calculator program that is communicating with the user

in C, solving the equation in Rust, and sending the result back to C. For reference, the

following listing shows the full contents of the lib.rs file of the calculate crate when

you are finished. The calculator library can be used from C FFI or normal Rust code.

use libc::{c_char, c_int};
use std::collections::VecDeque;
use std::ffi::CStr;
use std::fmt::{Display, Formatter};

#[no_mangle]
pub extern "C" fn solve(

line: *const c_char, solution: *mut c_int) -> c_int {
if line.is_null() || solution.is_null() {

return 1;
}

let c_str = unsafe { CStr::from_ptr(line) };
let r_str = match c_str.to_str() {

Ok(s) => s,
Err(e) => {

eprintln!("UTF-8 Error: {}", e);
return 1;

}
};

match evaluate(r_str) {
Ok(value) => {

unsafe {
*solution = value as c_int;

}
0

}
Err(e) => {

eprintln!("Error: {}", e);
1

}
}

}

enum Error {
InvalidNumber,
PopFromEmptyStack,

}

impl Display for Error {
fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {

match self {
Error::InvalidNumber => write!(

Listing 3.13 Calculator library
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f, "Not a valid number or operator"),
Error::PopFromEmptyStack => write!(

f, "Tried to operate on empty stack"),
}

}
}

#[derive(Debug)]
struct RpnStack {

stack: VecDeque<i32>,
}

impl RpnStack {
fn new() -> RpnStack {

RpnStack {
stack: VecDeque::new(),

}
}

fn push(&mut self, value: i32) {
self.stack.push_front(value);

}

fn pop(&mut self) -> Result<i32, Error> {
match self.stack.pop_front() {

Some(value) => Ok(value),
None => Err(Error::PopFromEmptyStack),

}
}

}

fn evaluate(problem: &str) -> Result<i32, Error> {
let mut stack = RpnStack::new();

for term in problem.trim().split(' ') {
match term {

"+" => {
let y = stack.pop()?;
let x = stack.pop()?;
stack.push(x + y);

}
"-" => {

let y = stack.pop()?;
let x = stack.pop()?;
stack.push(x - y);

}
"*" => {

let y = stack.pop()?;
let x = stack.pop()?;
stack.push(x * y);

}
"/" => {

let y = stack.pop()?;
let x = stack.pop()?;
stack.push(x / y);

}
other => match other.parse() {

Ok(value) => stack.push(value),
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Err(_) => return Err(Error::InvalidNumber),
},

}
}

let value = stack.pop()?;
Ok(value)

}

Let’s try running it to verify that it all works together with our new error-handling code:

$ cargo build
$ ./calculator
> 3 4 *
12
> 19 8 /
2
> hello
Error: Not a valid number or operator
> 4 *
Error: Tried to operate on empty stack
> 30 2 -
28
> 30 4 +
34
> 4
4

It works exactly as intended.

 Figure 3.4 shows the lifetime graph for this calculator FFI program.

Figure 3.4 The lifetime graph for the calculator FFI program
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Summary

 unsafe functions and blocks can be used to perform some operations that nor-

mal Rust code forbids, like dereferencing raw pointers.

 unsafe means that a few rules are unchecked by the compiler, and it is the devel-

oper’s responsibility to ensure that Rust’s memory safety rules are enforced.

 You can write a normal Rust function with your business logic in it and a wrap-

per function that handles communicating with C over FFI boundaries.

 A cdylib Rust crate can be linked with a normal C program, and Rust functions

annotated for FFI can be called from C.

 CStr can be used to turn a null-terminated C-style string into a Rust &str.

 Normal Rust types like &str can provide safe and easy-to-use abstractions over

shared memory with C code.

 &str doesn’t need to reallocate memory to perform substring operations.

 match expressions can be used like C switch statements to perform multiple

comparison operations on a single value.

 Debug formatting can provide information like hidden escape codes within a

string or the internals of a data structure.

 The Display trait is used for printing values with the {} placeholder.

 Implementing the Display trait for error types is considered best practice. 
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The previous chapter centered around a simple example of calling a Rust function

from C code. We used a single C stack–allocated string value from our Rust code, but

the Rust code did not send any heap-allocated values to the C code, nor did it call any

C functions. The API surface of our C calculator program was very small, and thus it

was quite straightforward to add Rust to it. This chapter is an extension of the pre-

vious chapter’s calculator example. Instead of adding our calculator function to a

simple CLI application, we’re going to write an NGINX extension module that

responds to HTTP requests with calculation results. This chapter is not intended as

a general guide on writing NGINX extensions; NGINX is simply a stand-in for a suf-

ficiently complex C codebase to which we want to add some Rust code.

 Our goal is to create a module for NGINX that solves Reverse Polish Notation

(RPN) math expressions using the calculate library that we created in chapter 3.

This chapter covers 

 Creating an NGINX extension module with Rust

 Generating Rust bindings for an existing C codebase

 Using a C memory allocator from Rust

 Sharing functions between Rust crates
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It should read the expressions from the request POST body. So, assuming that the

NGINX server is running on port 8080, it should be usable like this:

$ curl -X POST -d '3 4 +' http://localhost:8080/calculate
7
$ curl -X POST -d '3 4 * 2 -' http://localhost:8080/calculate
10

NGINX is a popular HTTP load balancer and reverse proxy written in C. It’s currently

used in over 400 million websites across the internet. NGINX has a module system

that allows developers to write C code that can control its behavior or add totally new

functionality. We will use this C API from both C and Rust to create an HTTP handler

that uses the same RPN calculator we created in chapter 3. Chapter 3 provided a

STDIN/STDOUT interface for using the calculator, but in this chapter, we will create

an HTTP interface. As NGINX is far more complicated than our STDIN/STDOUT

program in chapter 3, we must take a number of steps to accomplish this task:

1 Download the NGINX source code.

2 Write some C glue code between NGINX and Rust.

3 Link the C module code to a Rust HTTP handler function.

4 Extract request details from the NGINX request struct.

5 Invoke the calculator library we wrote in chapter 3.

6 Return the calculation result on the HTTP response.

4.1 Downloading the NGINX source code

Downloading the NGINX source code is the most straightforward of all the steps. We

will use version 1.19.3 of NGINX, which can be downloaded freely from the NGINX

website (https://nginx.org). It is provided as a gzipped tarball, and we can easily extract

it once it’s been downloaded. Let’s also create a new crate directory with Cargo to put

all these files into:

$ cargo new --lib ngx_http_calculator_rs
$ cd ngx_http_calculator_rs
$ wget https://nginx.org/download/nginx-1.19.3.tar.gz
$ tar -xfz nginx-1.19.3.tar.gz

We’re now ready to start writing some code!

NOTE The following sections have a large number of file paths and commands in
them. Assume that all file paths are relative to the ngx_http_calculator_rs crate
directory that we just created. Assume all command-line sessions begin in this
directory, and, if required, the command-line session will contain a cd line at the
beginning to indicate which subdirectory commands should be run within. 

4.2 Creating the NGINX module

NGINX has a large and complicated C API surface, and this chapter is not intended to

be a guide on how to write an NGINX plugin. This section provides some starter code

for a C NGINX module that calls out to a Rust function to provide an HTTP handler. 

https://nginx.org
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 NGINX allows developers to write dynamic modules, which are loaded into mem-

ory by the NGINX binary after it’s started up. We’re going to create a dynamic module

for this example, which should allow us to update the module by recompiling our

Rust code, without needing to recompile the whole NGINX binary each time. To cre-

ate a new dynamic module, we begin by creating a directory called module and placing

two new files in it. The first file is module/config, and it should look like this:

ngx_module_type=HTTP
ngx_module_name=ngx_http_calculator
ngx_module_srcs="$ngx_addon_dir/ngx_http_calculator.c"
ngx_module_libs=""

. auto/module

ngx_addon_name=$ngx_module_name

This file is a shell script that sets some environment variables that NGINX uses in its

custom build steps for modules. The variables this file is expected to set are docu-

mented on the NGINX webpage (https://mng.bz/oKWp).

 By reading the variables set in the shell script, you may have been able to guess the

path of the second file we’re going to create. Go ahead and create module/ngx_

http_calculator.c. This C source code file sets some global variables and provides

some functions required for initializing our NGINX module. It is possible to write

these variables and functions in Rust, which would enable you to write zero C code.

However, these initialization functions are simple, and they rely a bit heavily on pre-

processor macros, which are not easily translatable to Rust. This chapter does not dis-

cuss moving them into Rust, but it could be a good exercise to try on your own!

 Add the following contents to your module/ngx_http_calculator.c file:

#include <ngx_config.h>
#include <ngx_core.h>
#include <ngx_http.h>

typedef struct {
ngx_flag_t enable_calculation;

} ngx_http_calculator_loc_conf_t;

ngx_int_t ngx_http_calculator_handler(ngx_http_request_t *r);

static void *ngx_http_calculator_create_loc_conf(ngx_conf_t *cf);
static char *ngx_http_calculator_merge_loc_conf(

ngx_conf_t *cf, void *parent, void *child);

static ngx_command_t ngx_http_calculator_commands[] = {
{ngx_string("calculate"),

NGX_HTTP_LOC_CONF | NGX_CONF_FLAG,
ngx_conf_set_flag_slot, NGX_HTTP_LOC_CONF_OFFSET,

Listing 4.1 NGINX module starter code

The forward declaration for the
function that we’re going to

define in our Rust library

This block allows us to write 
calculate on; in our NGINX 
config file to tell NGINX that 
this library should handle 
specific HTTP requests.

https://mng.bz/oKWp
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offsetof(ngx_http_calculator_loc_conf_t,
enable_calculation), NULL},

ngx_null_command};

static ngx_http_module_t ngx_http_calculator_module_ctx = {
NULL, NULL, NULL, NULL, NULL, NULL,

ngx_http_calculator_create_loc_conf,
ngx_http_calculator_merge_loc_conf};

ngx_module_t ngx_http_calculator = {
NGX_MODULE_V1,
&ngx_http_calculator_module_ctx,
ngx_http_calculator_commands,
NGX_HTTP_MODULE,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NGX_MODULE_V1_PADDING};

static void *ngx_http_calculator_create_loc_conf(ngx_conf_t *cf)
{

ngx_http_calculator_loc_conf_t *conf;

conf = ngx_pcalloc(cf->pool, sizeof(
ngx_http_calculator_loc_conf_t));

if (conf == NULL) {
return NULL;

}

conf->enable_calculation = NGX_CONF_UNSET;

return conf;
}

static char *ngx_http_calculator_merge_loc_conf(
ngx_conf_t *cf, void *parent, void *child)

{
ngx_http_calculator_loc_conf_t *prev = parent;
ngx_http_calculator_loc_conf_t *conf = child;

ngx_conf_merge_value(conf->enable_calculation,
prev->enable_calculation, 0);

if (conf->enable_calculation) {
ngx_http_core_loc_conf_t *clcf;

clcf = ngx_http_conf_get_module_loc_conf(
cf, ngx_http_core_module);

clcf->handler = ngx_http_calculator_handler;
}

return NGX_CONF_OK;
}

Don’t let the large number of NULL values scare you! The NGINX module system has a

large number of hooks, and many of them are not required to solve the problem

we’re trying to solve.

The variable ngx_http_calculator
matches the name of the module in the

module/config file. It lets NGINX know
which symbol to load from our dynamic

library when it opens the module.

This V1 macro allows NGINX to version its C 
API a bit. There is currently only a V1 to this 
API, and for now, we need to include the V1 
constant at the top of the module, and the 
V1 padding macro at the end of it.

This macro tells NGINX that our module 
will control the HTTP subsystem. NGINX 
has a number of subsystems, and many 
of them have hooks for modules.

Tells NGINX to call our Rust 
function when the HTTP handler 
is invoked. If the calculate on 
argument is provided in the 
NGINX configuration, we set the 
HTTP handler function to our 
Rust handler function.
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 Now that we have the C code required for our NGINX module, let’s try compiling

it! Move into the NGINX source directory that we created earlier and run the

configure script with the module directory we previously created:

$ cd nginx-1.19.3
$ ./configure --add-dynamic-module=../module

Given the ../module path, the configure script will run the ../module/config file to

tell the build process some metadata about how it should build our module. Next, we

can compile NGINX and our module with a single make command:

$ cd nginx-1.19.3
$ make -j16 build modules

The build target is the main nginx executable, and modules represents all the config-

ured plugin modules (such as ours). These modules produce lots of output and may

take a bit of time. We recommend using the -j (which stands for jobs) option on

make to parallelize the build. We used -j16 on our machine as our CPU has 16 cores. 

 Once make has finished compiling our module and the NGINX binary, a few new

files should appear in the output directory objs, where NGINX’s build process places

binaries and libraries once they are built. Searching for executables in this directory

reveals two important-looking files:

$ cd nginx-1.19.3
$ find objs -executable -type f
objs/ngx_http_calculator.so
objs/nginx

Now that we have a compiled NGINX and a compiled module, let’s try starting

NGINX with our module loaded! However, first, NGINX needs a working directory to

put its temp files, config files, and logs into. We will create these now. Let’s call it ngx-

run. In addition to the top-level folder, it must have a logs subdirectory:

$ mkdir ngx-run
$ mkdir ngx-run/logs

NOTE NGINX will use this ngx-run directory as a scratch space while run-
ning. Other than the logs directory and the configuration file, don’t worry
too much about the structure of this directory.

Now, create the file ngx-run/nginx.conf and add the following to it:

load_module ../nginx-1.19.3/objs/ngx_http_calculator.so;

worker_processes 1;
daemon off;
error_log /dev/stderr info;

events {
worker_connections 1024;

}

The dynamic library file for our module. It contains the 
definition for the ngx_http_calculator variable, which 
tells NGINX what to do when it loads our module.

The NGINX server 
binary itself

Instructs NGINX to load our dynamic
module at the given file path

Directs err information directly to the console. 
Normally NGINX swallows this line and adds it to 
log files. While ideal for production workloads, 
it makes live debugging much more challenging.
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http {
access_log /dev/stdout;

server {
listen 8080;

location /calculate {
calculate on;

}
}

}

Now that we have a configuration file for NGINX, let’s start it up! We’ll be using the

following command many times throughout the chapter to run our NGINX instance:

$ ./nginx-1.19.3/objs/nginx -c nginx.conf -p ngx-run
nginx: [emerg] dlopen() "ngx_http_calculator.so" failed
(ngx_http_calculator.so: undefined symbol:

ngx_http_calculator_handler)
in nginx.conf:1

NGINX doesn’t start! But why? After all that work, don’t we deserve something? Well,

we lied to NGINX a bit. We have a forward declaration in our C file that tells NGINX,

“We’re going to define the function ngx_http_calculator_handler at some point,”

but we have not provided that definition anywhere yet. The next section walks

through creating this function in Rust and exposing it to our existing C code. 

4.3 Linking C to Rust

In the previous section, we wrote a forward declaration for an HTTP handler that

looks like this:

ngx_int_t ngx_http_calculator_handler(ngx_http_request_t *r);

And we understood that we’d later provide this function in our Rust library. Translat-

ing that C function declaration to a Rust function declaration is straightforward. Let’s

take a look:

#[no_mangle]
pub unsafe extern "C" fn ngx_http_calculator_handler(

r: *mut ngx_http_request_t
) -> ngx_int_t {

0
}

This function needs to exist to be callable from NGINX, but a few things need to hap-

pen first. You may have noticed that some types in that function signature start with

the prefix ngx_. These types are exposed by the NGINX module API in its header

files. Normally, when writing a module in C, you can simply include these header files

in your C code, and the types would be available to you. Since we’re not writing our

handler function in C, we need to do some work to get these types into Rust.

 We’re going to need to generate Rust bindings for the C types in NGINX. A binding

is essentially metadata about an API that exists for a library implemented in a different

Similarly, directs request logs 
to STDOUT instead of a file

Tells NGINX that requests 
routed to /calculate should be 
handled by our calculate library
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programming language. It’s the metadata about all the functions, types, and global

variables that exist in that library—without the implementation of any of those things.

In chapter 3, we created C bindings for the Rust calculate library with a C-compatible

solve function as a part of that library. Bindings don’t always exist as a part of a library

itself; they are often provided by separate libraries. For example, the openssl library is

written in C; to directly interact with the C functions from Rust, you can use the

openssl-sys Rust crate. This crate provides Rust bindings for the openssl C library.

Figure 4.1 shows the way the high-level Rust bindings in the openssl crate call down to

direct bindings in the openssl-sys crate, which then cross the FFI boundary into the

openssl C library (figure 4.1). 

Figure 4.1 High- and low-level Rust bindings for the openssl C library
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To generate these C bindings, we’re going to need to introduce a new Rust concept—

the build script. 

4.3.1 Build scripts

A build script is a small Rust program that Cargo compiles and runs just before our

larger library or executable is compiled. It can do anything that a normal Rust pro-

gram would do. It’s useful to us because it can generate Rust code dynamically at build

time, which is fed back into the compiler. Let’s table the NGINX discussion for a

moment to consider a simplified example. 

 Imagine that you are building a greeting application, and you want to provide the

ability for your program to greet people in multiple languages. However, you do not

want to ship a single massive application with all the world’s languages in it. You

decide you would like to accomplish your task by using an environment variable

passed to the compiler to determine which language the greeting application should

support. You will provide appropriately compiled versions to different regions. Let’s

get started!

NOTE This example is contrived to teach you about build scripts; it is not a
good way to accomplish internationalization. Far better internationalization
mechanisms are available for Rust. So, please don’t follow this method in real
life.

Create a new crate directory (outside of the NGINX crate directory) with Cargo:

$ cargo new build-script-test

NOTE In this subsection, all paths are relative to the root of the new build-
script-test crate directory. 

Move into your new directory and create and open the file build.rs. By default,

Cargo will look for a file at the root of a crate directory called build.rs and treat it as

a build script if present. Since build scripts are run like normal Rust programs, we

need to give it a main function. We can fill out this main function with the two most

important jobs that this build script will do: read an environment variable and write

out a file.

use std::fs::File;
use std::io::Write;

fn main() {
let language = std::env::var("GREET_LANG").unwrap();

Listing 4.2 Basic build script that writes to a file

Imports the Write trait so that 
we can call file.write_all on the 
final line of our main function

std::env::var looks up the value of environment variables at run time.
It returns an Option<String> because the requested variable may
not be set. So, we need to unwrap the Option before we can use it.
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let mut file = File::create("src/greet.rs").unwrap();
file.write_all(language.as_bytes()).unwrap();

}

Let’s try running our build script now with Cargo:

$ cargo run
Compiling build-script-test v0.1.0

error: failed to run custom build command for
`build-script-test v0.1.0

Caused by:
process didn't exit successfully:
--- stderr
thread 'main' panicked at 'called `Result::unwrap()` on an `Err`

value: NotPresent'
note: run with `RUST_BACKTRACE=1` environment variable to

display a backtrace

It looks like our build script panicked because we did not provide it with a value for

the newly expected GREET_LANG environment variable. Let’s try that again:

$ env GREET_LANG=en cargo run
Compiling build-script-test v0.1.0
Finished dev [unoptimized + debuginfo] target(s) in 0.25s
Running `build-script-test`

Hello, world!

We managed to run our build script successfully! Let’s see whether it created the

expected output. We should now see a file called src/greet.rs containing whatever

we passed to the compiler as the GREET_LANG environment variable:

$ ls src
main.rs greet.rs

$ cat src/greet.rs
en

We can write a string into a file, but en is certainly not a valid Rust file. We need to edit

our build script a bit to write out different Rust code, depending on the value of

GREET_LANG it sees.

use std::fs::File;
use std::io::Write;

fn main() {
let language = std::env::var("GREET_LANG").unwrap();

Listing 4.3 Build script writing code with environment variables

Creates (or recreates 
if already existing) a 
file on disk

Writes out the contents of the language variable. write_all expects to
receive bytes as its input since files may not always contain text data,

so we use .as_bytes on our string to get the underlying byte data.
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let greeting = match language.as_ref() {
"en" => "Hello!",
"es" => "¡Hola!",
"el" => "?ε?α σα?",
"de" => "Hallo!",
x => panic!("Unsupported language code {}", x),

};

let rust_code = format!("fn greet() {{
println!(\"{}\"); }}", greeting);

let mut file = File::create("src/greet.rs").unwrap();
file.write_all(rust_code.as_bytes()).unwrap();

}

Now, if we rerun our build script by compiling our library a few times with different

language options, we should see the text in src/greet.rs change:

$ env GREET_LANG=en cargo run
hello!

$ cat src/greet.rs
fn greet() { println!("hello!"); }

$ env GREET_LANG=el cargo run
?ε?α σα?

$ cat src/greet.rs
fn greet() { println!("?ε?α σα?"); }

So, we have managed to write out some Rust code, but we need to update our execut-

able to take advantage of it. Currently, the executable just has the basic “Hello world!”

code provided by Cargo.

include!("greet.rs");

fn main() {
greet();

}

We introduced a new macro here—include!. It works similarly to the C/C++

#include directive. It takes the text contents of a file, parses it as Rust code, and

inserts it where include! is called. Figure 4.2 diagrams how our program works

between the build script and the src/main.rs file. 

Listing 4.4 Greeting program using the generated greet.rs file

We use .as_ref because 
std::env::var returns a String. To 
use a match expression with 
string literals (which are &strs), 
we must convert the String into 
an &str. using .as_ref.

{{ is necessary because the format! macro uses curly braces as placeholders for
formatting. To get the literal curly brace character necessary to create a function

body, we use {{. Similarly, we need to escape the quotes within the println!
macro so that we do not prematurely end the rust_code string literal.

Includes (include!) the text contents of our src/greet.rs file, 
parses it as Rust code, and adds it to the src/main.rs file. We do 
not need the src/ prefix on the path because include! relative 
paths are relative to the source file in which they are used.

We can call the greet function here because we 
defined it in src/greet.rs and then used include! to 
add the text from src/greet.rs into src/main.rs.
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NOTE include! should not be used for importing Rust files in the general sense.
See chapter 5 for a discussion on the Rust module system. include! should gen-
erally only be used with code files generated dynamically at build time.

Figure 4.2 Compilation and execution of a program with a build script

Now that we understand a bit about how build scripts can be used to generate Rust

code, let’s move back to our NGINX code. Recall that we want to generate Rust bind-

ings for the NGINX C API. To generate these bindings, we can write out a bunch of Rust

code ourselves, or we can use a build script to do it for us. We’re going to do the latter.

We will create a build script that uses a Rust library called (appropriately) bindgen. 

4.3.2 bindgen

bindgen is a Rust library that parses C/C++ code and outputs Rust bindings automati-

cally. In its simplest form, bindgen generates Rust-compatible definitions for C/C++

types and functions loaded from a single header file. Let’s begin by adding bindgen to

our Cargo.toml file:

[package]
name = "ngx_http_calculator_rs"
version = "0.1.0"
authors = ["You <you@you.com>"]
edition = "2018"

[dependencies]

[build-dependencies]
bindgen = "0.56.0"

Notice that we did not include bindgen under the dependencies section but rather

the new-to-us build-dependencies section. Since bindgen will only be used from the

$ GREET_LANG=en cargo run
// greet.rs
fn greet() {

println!("Hello");
}

// main.rs
fn greet() {

println!("Hello");
}

fn main() {
greet();

}

print to stdout

compile build.rs
run build.rs

compile main.rs

run program

render include!

compile program

write src/greet.rs

// stdout
Hello
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build script to generate Rust code, it does not need to be included in our finished

binary as a normal dependency; we only need it to be included in the dependencies of

our build script. 

 We need our build script to generate Rust bindings for NGINX using the bindgen

crate. bindgen works by parsing a C/C++ header file (and following all include direc-

tives) for type, variable, and function declarations, and outputting Rust code that is

compatible with those declarations. 

 Before we can use bindgen, we need to create this header file. It needs to #include

all of the headers that our Rust module might need access to. Let’s start by adding the

headers that we’re using from inside our C module. Put the following contents into a

file called wrapper.h:

#include <ngx_config.h>
#include <ngx_core.h>
#include <ngx_http.h>

This code is just a normal C header file, but instead of being used to compile C code,

we will use it to generate Rust code. So, now that we have our header ready, let’s create

build.rs and open it to look at how we can use bindgen to create our bindings.

fn main() {
let nginx_dir = "nginx-1.19.3";

let bindings = bindgen::builder()
.header("wrapper.h")
.clang_args(vec![

format!("-I{}/src/core", nginx_dir),
format!("-I{}/src/event", nginx_dir),
format!("-I{}/src/event/modules", nginx_dir),
format!("-I{}/src/os/unix", nginx_dir),
format!("-I{}/objs", nginx_dir),
format!("-I{}/src/http", nginx_dir),
format!("-I{}/src/http/v2", nginx_dir),
format!("-I{}/src/http/modules", nginx_dir),

])
.generate()
.unwrap();

bindings
.write_to_file("nginx.rs")
.unwrap();

}

Let’s run our build script by recompiling our library. It may take a bit longer this time,

as the compiler is now doing a lot of work inspecting NGINX header files when it

runs. After the build step finishes, you should see a new file placed into the root of the

crate directory nginx.rs. Open this file and take a look around. After getting past

Listing 4.5 Build script creating NGINX bindings for Rust

wrapper.h is the header file we just created. bindgen 
only accepts a single header file as its input, and 
because we need the types from three different 
NGINX header files, we need to write our own 
header file that includes (#include) all of them.

This list represents command-line 
arguments fed to the clang C/C++ 
compiler when it’s used to parse the 
wrapper.h header file. We provide 
it with the directories required to 
resolve all the #include directives 
down to the dependency tree of 
header files within NGINX.

Specifies the output location 
for bindgen. Our bindings 
will be written to nginx.rs.
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some of the generated Rust code for dealing with bit fields, you may notice that a lot

of the types and functions laid out in this file have little to do with NGINX itself. To

start, the entire C standard library is described here! This API surface is probably far

more than we’re going to need for our integration, and keeping it included will only

bloat our compile times. This file appears to contain over 51,000 lines, and any efforts

to reduce that size would be well spent. We can constrain this file using the whitelist

functionality of bindgen.

NOTE If you get an error about missing libclang.so files, you need to install
libclang from your operating system’s package manager. bindgen uses lib-
clang to parse the C and C++ files passed to it.

Eagle-eyed readers may have noticed that the types and functions in the NGINX mod-

ule API begin with the ngx_ prefix. We can use a regular expression to only include

types, functions, and global variables that begin with this prefix, ignoring all others.

Let’s go back to our build.rs file and add those rules. 

fn main() {
let nginx_dir = "nginx-1.19.3";

let bindings = bindgen::builder()
.header("wrapper.h")
.whitelist_type("ngx_.*")
.whitelist_function("ngx_.*")
.whitelist_var("ngx_.*")
.clang_args(vec![

format!("-I{}/src/core", nginx_dir),
format!("-I{}/src/event", nginx_dir),
format!("-I{}/src/event/modules", nginx_dir),
format!("-I{}/src/os/unix", nginx_dir),
format!("-I{}/objs", nginx_dir),
format!("-I{}/src/http", nginx_dir),
format!("-I{}/src/http/v2", nginx_dir),
format!("-I{}/src/http/modules", nginx_dir),

])
.generate()
.unwrap();

bindings
.write_to_file("nginx.rs")
.unwrap();

}

Rerunning the build, we now have an nginx.rs file containing 30,000 lines of code.

It’s not ideal, but it’s certainly an improvement over the previous step. A sufficiently

motivated developer could go through and explicitly allow every individual type

required to make their FFI integration work, but it’s not necessary at this stage.

Listing 4.6 bindgen build script only accepting ngx_ prefixed items

These whitelist_ methods accept strings 
formatted as regular expressions.
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 We need to change on more thing about our build script: up until now, we’ve been

placing the nginx.rs file in the root of our crate directory. However, it doesn’t really

belong there. When we generate files as a part of a build script that are meant to be

included in later compilation steps, they should be placed in the out directory. Cargo

manages the out directory, which is unique to each run of the compiler. It is where all

generated files should be placed, as we probably do not want to be committing 30,000

lines of generated code into our version control system!

 The location of the out directory is only knowable by inspecting environment vari-

ables that Cargo sets. For build scripts, Cargo sets a number of environment variables

when the script is being executed, and these same environment variables are provided

to our main crate at compile time. Let’s see how we can reference this environment

variable to place our nginx.rs file inside the out directory. Replace the last three lines

of the bottom of the main function of our build.rs file with the following lines:

let out_dir = std::env::var("OUT_DIR").unwrap();

bindings
.write_to_file(format!("{}/nginx.rs", out_dir))
.expect("unable to write bindings");

Now that our generated code is going to the correct place, we need to add it to our

Rust library using the include! macro that we discussed earlier in the chapter. Since

the source file is in $OUT_DIR/nginx.rs, we need a way to look up variables at compile

time. We could use std::env::var like we did in the build script, but it is used for run-

time lookups. We need to check the value of this variable at compile time. Instead, we

can use the env! macro. This macro expands to a string containing the value of the

environment variable at the time the program was compiled. It is a compiler error if

the variable is not provided. For our example, we can look up the OUT_DIR environ-

ment variable using 

env!("OUT_DIR")

So, we have our out directory, and we know that we need nginx.rs inside of that

directory, but how can we combine these two things? At run time, we could just use

format! to smash them together with a path separator in the middle, but how can we

do this same thing at compile time? The concat! macro is the answer. This macro per-

forms simple string concatenation operations for strings known at compile time.

Because we want to generate a path that looks like $OUT_DIR/nginx.rs, we can use

concat! as follows:

concat!(env!("OUT_DIR"), "/nginx.rs")

This method is a bit different from how we built up this same path in our build script,

but remember that run time for the build script is essentially the same as compile time

for our application code. We need slightly different semantics to accomplish the same

task, unfortunately. Now that we have all the pieces, let’s put them together.

Cargo automatically sets 
the OUT_VAR variable 
for build scripts. 
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 Open up src/lib.rs and add the following to the top of the file:

include!(concat!(env!("OUT_DIR"), "/nginx.rs"));

That’s a lot of macros! Let’s revisit them one at a time:

 include! is a source-include operation similar to #include in C/C++.

 concat! performs string concatenation at compile time.

 env! looks up the value of the OUT_DIR environment variable at compile time.

Figure 4.3 shows a visual look at each of these pieces.

Now that we understand how to include the generated NGINX code, we can finally

revisit that HTTP handler function we declared so long ago. If we include it in src/

lib.rs, along with the include! macro we just wrote and an extra "Hello world!" mes-

sage, it should look like the following listing.

include!(concat!(env!("OUT_DIR"), "/nginx.rs"));

#[no_mangle]
pub unsafe extern "C" fn ngx_http_calculator_handler(

r: *mut ngx_http_request_t
) -> ngx_int_t {

eprintln!("Hello from Rust!");
0

}

If we try to compile this code now, it works! We do get a large number of warnings due

to the C-style names that bindgen generates that don’t align with the Rust style guide-

lines. We can silence these warnings with some compiler directives, but for now let’s

continue.

 Recall from chapter 3 that, when linking to Rust code from C code, we need to

instruct Cargo to generate a C-compatible dynamic library instead of the usual Rust-

compatible library format it generates. Open cargo.toml and add the following lines:

[lib]
crate-type = ["cdylib"]

Listing 4.7 Fully formed minimum NGINX handler function in Rust

include!(concat!(env!("OUT_DIR"), "/nginx.rs"));

Combine into a string constant

OUT_DIR environment variable

Include specified file as Rust source code

Figure 4.3 Diagram 

of our new syntax
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Now, when we build our crate, we should find a dynamic library inside our build

directory:

$ cargo build
$ ls target/debug/*.so
target/debug/libngx_http_calculator_rs.so

Because this dynamic library contains our HTTP handler function, we need to link to

it from our NGINX C module by adding an additional configuration variable to our

module/config file:

ngx_module_type=HTTP
ngx_module_name=ngx_http_calculator
ngx_module_srcs="$ngx_addon_dir/ngx_http_calculator.c"
ngx_module_libs="/path/to/your/libngx_http_calculator_rs.so"

. auto/module

ngx_addon_name=$ngx_module_name

Since we’ve updated the module configuration, we need to recompile it. Unfortu-

nately, the NGINX build process requires us to rerun the configure script and rebuild

the binary after we update the module configuration files. This is the last time this will

be required:

$ cd nginx-1.19.3
$ ./configure --add-dynamic-module=../module
$ make -j16 build modules

Now, after all these steps, we are finally ready to run NGINX, and we should expect

our “Hello world!” message to show up!

 First, let’s start NGINX using the same command from earlier. It should print out

some “notice”-level messages and then do nothing as it waits to receive HTTP

requests. Use a separate terminal to send an HTTP request to the /calculate end-

point that we enabled our module for in the nginx.conf file. The HTTP request itself

should fail, but the more interesting thing is what shows up in the NGINX logs:

$ ./nginx-1.19.3/objs/nginx -c nginx.conf -p ngx-run
....
Hello from Rust!

# Concurrently, in a separate window after NGINX is started
$ curl -X POST -d '3 4 * 2 -' http://localhost:8080/calculate
<html>
<head><title>400 Bad Request</title></head>
<body>
<center><h1>400 Bad Request</h1></center>
<hr><center>nginx/1.19.3</center>
</body>
</html>

The newly added line. An absolute path is
used to ensure that no differences in relative
path resolution will cause problems when we

try to load the module at NGINX run time.
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We’ve done it! We’ve successfully routed an HTTP request from NGINX’s C code to

our Rust HTTP handler function. Now that we have some level of communication

between the two systems, we need to move on to implementing the business logic of

the HTTP handler. 

4.4 Reading the NGINX request

Getting the request body data off our NGINX POST request is not too difficult. It’s

quite similar to the method we used to read data off the stack-allocated STDIN buffer

in chapter 3. However, instead of accessing the buffer as a simple *const u8 function

argument, NGINX provides us with mut ngx_http_request_t, which has a lot of dif-

ferent fields on it. We’ll need to turn this value into something that our Rust code can

understand. 

 The NGINX HTTP stack has many different modules for handling requests built

in, and not all of them require the contents of the HTTP request body to be read in.

Therefore, the request struct passed to HTTP handler functions does not actually

have the request body loaded yet. We need to call the HTTP library’s body-parsing

method to get this data out. The function we need is ngx_http_read_client_

request_body. It takes a pointer to a request and a function pointer to be called when

the request body has been read into memory. Let’s see how we can use it to load in the

request body. 

include!(concat!(env!("OUT_DIR"), "/nginx.rs"));

#[no_mangle]
pub unsafe extern "C" fn ngx_http_calculator_handler(

r: *mut ngx_http_request_t,
) -> ngx_int_t {

let rc = ngx_http_read_client_request_body(
r, Some(read_body_handler));

if rc != 0 {
return rc;

}

0
}

unsafe extern "C" fn read_body_handler(
r: *mut ngx_http_request_t) {

if r.is_null() {
eprintln!("got null request in body handler");
return;

}

let request = &*r;

let body = match request_body_as_str(request) {

Listing 4.8 Request handler that can read off the request body

ngx_http_calculator_
handler is the entry point 
that NGINX calls when it 
receives a request.

ngx_http_read_client_request_body reads the 
body off of the network and adds it to a buffer on 
the request struct. Since reading from the network 
may take some time, we must provide a callback 
function for NGINX to call when it is finished.

read_body_handler is the 
callback function that NGINX calls 
when it has read the request body 
into memory from the network.
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Ok(body) => body,

Err(e) => {

eprintln!("failed to parse body: {}", e);

return;

}

};

eprintln!("Read request body: {:?}", body);

}

unsafe fn request_body_as_str<'a>(

request: &'a ngx_http_request_t,

) -> Result<&'a str, &'static str> {

if request.request_body.is_null()

|| (*request.request_body).bufs.is_null()

|| (*(*request.request_body).bufs).buf.is_null()

{

return Err("Request body buffers

were not initialized as expected");

}

let buf = (*(*request.request_body).bufs).buf;

let start = (*buf).pos;

let len = (*buf).last.offset_from(start) as usize;

let body_bytes = std::slice::from_raw_parts(start, len);

let body_str = std::str::from_utf8(body_bytes)

.map_err(|_| "Body contains invalid UTF-8")?;

Ok(body_str)

}

Now, several things can be highlighted in this code example, but let’s start with the

three functions defined in it. First, notice the various levels of annotations that appear

on these functions. Let’s look at the signatures of the functions without any parame-

ters or body code. All three of these functions include some additional annotations on

them in addition to the standard fn keyword, but none have exactly the same

annotations:

#[no_mangle]
pub unsafe extern "C" fn ngx_http_calculator_handler

unsafe extern "C" fn read_body_handler

unsafe fn request_body_as_str

Figure 4.4 points out all these parts visually.

Prints out the request body 
after we’ve parsed it off of 
the NGINX request struct

request_body_as_str reads the 
request body off of the NGINX 
request struct and tries to 
interpret it as a Rust string 
slice. It does not allocate any 
additional memory; it simply 
reinterprets the existing bytes.
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Figure 4.4 Breakdown of the different elements of the function signatures

The first function is ngx_http_calculator_handler. This function needs to be called

by name from the C code, and it needs to perform unsafe operations within it. It

needs #[no_mangle] and pub to expose its name across the FFI boundary to the C

code, and it needs extern "C" to be safely callable by the C code. In addition, because

name mangling is disabled, we need to use C-style namespacing on the function,

hence the ngx_http_calculator prefix to avoid clashing with other C functions. 

 Next, we have read_body_handler. This callback function needs to be callable

from C code, but the C code does not need to know its name, just its memory loca-

tion. Consequently, we provide extern "C" so that C calling conventions will be used

and the function can be used over the FFI boundary. Because the name of the func-

tion will only ever be used from Rust code, we do not need to disable name mangling

or publicly expose this function. We do perform unsafe operations within this func-

tion, so the unsafe keyword is added to the signature also. 

 Finally, request_body_as_str: this function is only called from normal Rust code;

it will never be called from C. This is obvious because of its lack of an extern "C"

annotation. So, Rust calling conventions will be used, and it is not safe to call this

function from C code. 

 Now that we have an understanding of the signatures of these three functions, let’s

dive a little deeper into their implementations. We’ll start with ngx_http_calculator_

handler:

#[no_mangle]
pub unsafe extern "C" fn ngx_http_calculator_handler(

r: *mut ngx_http_request_t,
) -> ngx_int_t {

let rc = ngx_http_read_client_request_body(
r, Some(read_body_handler));

if rc != 0 {
return rc;

#[no_mangle]
pub unsafe extern "C" fn ngx_http_calculator_handler

unsafe extern "C" fn read_body_handler

unsafe fn request_body_as_str

Disables name mangling

Allows unsafe
operations

Uses C calling conventions
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}

0
}

This function only does three things: it calls ngx_http_read_client_request_body to

set up the event chain to read in the HTTP POST request body, checks the return

code of that, and returns a zero to tell NGINX that there are no errors. Because this

function is only called by NGINX itself, it needs to adhere to the quite rigid definition

of what an NGINX HTTP handler function does. It needs to take in a single request

struct as its parameter and return an int status code. Many functions in NGINX

return int status codes, with zero representing a success status. 

 Let’s look a little closer at ngx_http_read_client_request_body. If we open the

autogenerated $OUT_DIR/nginx.rs, we can see the Rust definition for this function,

and if we look at nginx-1.19.3/src/http/ngx_http_request_body.c, we can com-

pare it with the C signature:

pub fn ngx_http_read_client_request_body(
r: *mut ngx_http_request_t,
post_handler: ngx_http_client_body_handler_pt,

) -> ngx_int_t;

ngx_int_t ngx_http_read_client_request_body(
ngx_http_request_t *r,
ngx_http_client_body_handler_pt post_handler,

)

The two function signatures are essentially identical. We also include the definitions

for the post_handler type, which both functions require:

pub type ngx_http_client_body_handler_pt =
Option<unsafe extern "C" fn(r: *mut ngx_http_request_t)>;

typedef void (*ngx_http_client_body_handler_pt)
(ngx_http_request_t *r);

We can see that bindgen has made the nullability of the function parameter a bit more

obvious by wrapping it in an Option. So, we need to wrap the read_body_handler in a

Some when passing it as a callback to ngx_http_read_client_request_body. This is

simply how bindgen generates function pointer types in Rust code coming from C

code. You may also notice from looking at the Rust type definition that the function

signature within the Option matches the signature of the callback function that we

defined. Here they both are:

pub type ngx_http_client_body_handler_pt =
Option<unsafe extern "C" fn(r: *mut ngx_http_request_t)>;

Rust function signature 
autogenerated by bindgen

C function 
signature

Rust type autogenerated 
by bindgen

The Rust ngx_http_client_body_handler_pt type
wraps the function handle in an Option so we can

cleanly deal with the case of a null function pointer.

C type
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unsafe extern "C" fn read_body_handler(
r: *mut ngx_http_request_t)

The type indicates that we must provide a callback that accepts a request pointer and

returns nothing. We provided this callback with read_body_handler. Now that we

have an understanding of our handler entry point, let’s look at how this callback is

implemented:

unsafe extern "C" fn read_body_handler(r: *mut ngx_http_request_t)
{

if r.is_null() {
eprintln!("got null request in body handler");
return;

}

let request = &*r;

let body = match request_body_as_str(request) {
Ok(body) => body,
Err(e) => {

eprintln!("failed to parse body: {}", e);
return;

}
};

eprintln!("Read request body: {:?}", body);
}

Most of the code in this function is quite predictable. Only one thing is new to us

here. Just before calling request_body_at_str, we have this line:

let request = &*r;

We already know that & is used for taking a reference to something, but what does *

mean? This symbol is called the dereference operator in Rust. As the name implies,

dereference means to use a reference to get the thing that the reference points to. It

is very similar to the dereference operator in languages like C, C++, and Go. 

 Using these two operators together on a raw pointer is an operation called reborrow-

ing. Essentially, reborrowing is converting a raw pointer into a Rust reference. The dif-

ference between the two things may be a bit unclear, but that is because, at run time,

they are exactly the same!

 A Rust reference is simply a pointer that the compiler has a bit of extra informa-

tion about. If you think about a pointer in C or C++, the compiler has absolutely no

information about where the memory underlying the pointer comes from, how long it

will be valid, or if the underlying value is initialized. A Rust reference allows the com-

piler to know all of this information. Since all references are associated with a lifetime,

we know how long a reference will be valid. All references are assumed by the com-

piler to be aligned, not null, and point to initialized values.

 We may want to convert a pointer to a reference for a few reasons:
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 Most Rust code is written to work with references and not pointers, so using ref-

erences over pointers makes code reuse much easier.

 We can perform the null check one time before the conversion and then never

worry about it again because Rust references must always be nonnull.

 We don’t need to use unsafe to access data behind a reference. While all the

functions in this example are unsafe, as we will see in chapter 5 , the majority of

our code base does not have to be.

 Accessing fields on a struct pointer is awkward because Rust does not have a

pointer field access operator like C or C++.

 Having a reference allows us to tie related lifetimes together, as we will see in

the declaration of request_body_as_str in a moment.

That being said, we need to adhere to a few guidelines when converting from a

pointer to a reference:

 Since Rust references are assumed by all code to be nonnull, we must verify this

before doing the conversion. You can see that this null check is the first thing

we do in read_body_handler.

 The thing stored at the pointer must be a valid instance of the type. For exam-

ple, many C memory allocation functions return uninitialized memory; it is not

safe to reborrow this memory as an &mut T and then initialize the memory

using the reference. It must be initialized using pointer operations.

 Once something is a reference, it must follow Rust’s borrowing rules. Because

we’re creating an immutable reference here, the Rust compiler will assume that

no other code will mutate the contents of our pointer. If a background thread

writes to this pointer while Rust holds an immutable reference to it, an unde-

fined behavior is created.

After we have completed the null checks, it is important to consider the lifetime. We

are taking a pointer that has no lifetime information and turning it into a reference

that does have lifetime information. Where does this lifetime come from? The short

answer is that it was always there; the compiler just didn’t know about it!

 Since we know that the NGINX executable doesn’t modify this request in the back-

ground, we have a null check, and we can reasonably believe that the memory is ini-

tialized. Thus, it is safe to turn this pointer into a reference.

 Let’s look at one more function in our handler—request_body_as_str. This func-

tion takes a reference to the NGINX request struct and returns a string slice contain-

ing the HTTP request body or an error if it could not be read. This function has a

number of new elements in it, and we will investigate all of them:

unsafe fn request_body_as_str<'a>(
request: &'a ngx_http_request_t,

) -> Result<&'a str, &'static str> {
if request.request_body.is_null()

|| (*request.request_body).bufs.is_null()
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|| (*(*request.request_body).bufs).buf.is_null()
{

return Err("Request body buffers
were not initialized as expected");

}

let buf = (*(*request.request_body).bufs).buf;

let start = (*buf).pos;
let len = (*buf).last.offset_from(start) as usize;

let body_bytes = std::slice::from_raw_parts(start, len);

let body_str = std::str::from_utf8(body_bytes)
.map_err(|_| "Body contains invalid UTF-8")?;

Ok(body_str)
}

The first thing that stands out as new is very close to the start of the function signa-

ture. We have a new kind of function argument here—a generic lifetime argument!

What is the purpose of this?

unsafe fn request_body_as_str<'a>(
request: &'a ngx_http_request_t,

) -> Result<&'a str, &'static str>

It’s a bit tricky to wrap our heads around, so let’s briefly step away from our NGINX

example and its complexity to consider a far simpler program.

4.4.1 Lifetime annotations

To effectively share memory in Rust programs, we sometimes need to help the com-

piler understand how multiple references relate to one another. The compiler is often

smart enough to figure out these relationships implicitly, but sometimes it needs a

helping hand. We can provide this help in the form of lifetime annotations. 

fn main() {
let numbers = vec![1, 2, 3, 4, 5];

let value = &numbers[0];

println!("value: {}", value);
}

This program creates a Vec containing five numbers, borrows the first number, and

prints it out. Let’s imagine that we need to move the core functionality of this pro-

gram, the piece that gets the number from the list, into a separate function. We can

do this in a very straightforward way.

Listing 4.9 Simple Rust program



116 CHAPTER 4 Advanced FFI

 

fn main() {
let numbers = vec![1, 2, 3, 4, 5];

let value = get_value(&numbers);

println!("value: {}", value);
}

fn get_value(numbers: &Vec<i32>) -> &i32 {
&numbers[0]

}

This code compiles, but why does it compile? How does the compiler know from the

signature of get_value that the lifetimes here are valid? Remember what happens

when we try to return a reference to a local variable? The function certainly doesn’t

compile. 

fn get_value() -> &i32 {
let x = 4;
&x

}

The reason the code in listing 4.10 compiles and in the code in listing 4.11 does not is

that the compiler is able to infer that the output lifetime in listing 4.10 matches the

input lifetime. Figure 4.5 illustrates the lifetime graph for this program.

Listing 4.10 Rust program using helper function

Listing 4.11 Function trying to return reference to local variable

fn main() {
  let numbers = vec![
    1,
    2,
    3,
    4,
    5,
  ];

  let value = get_value(
    &numbers
  );

  println!(
    "value: {}",
    value,
  );
}

fn get_value(
  numbers: &Vec<i32>
) -> &i32 {
  &numbers[0]
}

value

numbers

get_value

numbers

main

Figure 4.5

Lifetime graph for 

listing 4.10
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This lifetime graph shows that the reference coming out of get_value is directly

descended from the reference that goes into it. Both references have the same life-

time. We can see the effects if we attempt to use the reference returned from

get_value after invalidating it:

fn main() {
let mut numbers = vec![1, 2, 3, 4, 5];

let value = get_value(&numbers);

numbers.push(6);

println!("value: {}", value);
}

fn get_value(numbers: &Vec<i32>) -> &i32 {
&numbers[0]

}

The Rust compiler will not accept this program. We get the following error message:

$ cargo run
error[E0502]: cannot borrow `numbers` as mutable

because it is also borrowed as immutable
--> src/main.rs:6:3
|

4 | let value = get_value(&numbers);
| -------- immutable borrow occurs here

5 |
6 | numbers.push(6);

| ^^^^^^^^^^^^^^^ mutable borrow occurs here
7 |
8 | println!("value: {}", value);

| ----- immutable borrow later used here

The compiler complains that we cannot mutate numbers because the variable value

holds an immutable borrow of numbers. Because the compiler knows that value refer-

ences memory within numbers, it will not allow us to mutate numbers. Experienced C

and C++ developers may have encountered pointer invalidation due to buffer reallo-

cation, which is not possible in safe Rust due to this rule preventing mutating memory

that is already borrowed. 

 Now, in this case, the Rust compiler is smart enough to figure out how the input and

output lifetimes of references match up, but we can make a very small change to our

function that will prevent the compiler from being able to effectively reason about this.

fn main() {
let numbers = vec![1, 2, 3, 4, 5];

let value = get_value(&numbers, "Getting the number");

println!("value: {}", value);
}

Listing 4.12 Returning a reference to an argument
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fn get_value(numbers: &Vec<i32>, s: &str) -> &i32 {
println!("{}", s);
&numbers[0]

}

If we attempt to run the code in listing 4.12, we will get a new compiler error:

$ cargo run
error[E0106]: missing lifetime specifier
--> src/main.rs:9:46
|

9 | fn get_value(numbers: &Vec<i32>, s: &str) -> &i32 {
| --------- ---- ^ expected named
| lifetime parameter
|
= help: this function's return type contains a borrowed value,

but the signature does not say whether it is borrowed
from `numbers` or `s`

help: consider introducing a named lifetime parameter
|

9 | fn get_value<'a>(numbers: &'a Vec<i32>, s: &'a str) -> &'a i32
{

| ^^^^ ^^^^^^^^^^^^ ^^^^^^^ ^^^

The compiler error here gives us a great hint as to what the problem is and how we

can fix it. The new get_value function has two references as its input parameters.

However, the output parameter can only have a single lifetime, so the compiler needs

to know which lifetime to assign to the output parameter. Is the number that

get_value returns borrowed from numbers or from s? In this instance, we are borrow-

ing from numbers, but the compiler needs to know before it can determine whether

the program is valid. We tell the compiler using lifetime annotations. We have a little

preview of them in the compiler error, but we do need to make one small change. 

fn main() {
let numbers = vec![1, 2, 3, 4, 5];

let value = get_value(&numbers, "Getting the number");

println!("value: {}", value);
}

fn get_value<'a>(numbers: &'a Vec<i32>, s: &str) -> &'a i32 {
println!("{}", s);
&numbers[0]

}

A new syntax (<'a>) appears before the list of value parameters. These angle brackets

are where Rust puts generic type arguments to functions, similar to how Java and

Typescript format generic type arguments. But what is the 'a within the angle brack-

ets? It is a lifetime annotation. Recall that when we first looked at lifetimes, we saw that

the 'static lifetime was used for references that were valid for the whole run time of

Listing 4.13 Returning a reference to an argument

The only line that changes:
we add the explicit lifetime

('a) annotation.
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the program and would never be deallocated. Now we see that we can create other

named lifetimes to refer to individual non-'static lifetimes. Figure 4.6 provides a

closer look at how this syntax works in this example. 

Figure 4.6 A closer look at the lifetime annotation syntax

Let’s also look at the lifetime graph of this new program to see how the lifetime anno-

tations help the compiler decide how the different borrows interact, as shown in

figure 4.7.

Figure 4.7 Lifetime graph for listing 4.13

fn get_value<'a>(numbers: &'a Vec<i32>, s: &str) -> &'a i32

Some lifetime that
we will call 'a exists

The lifetime 'a describes the
lifetime of the reference to
numbers that was passed
to this function.

'a also describes the lifetime
of the i32 reference returned
from get_value.

By combining these two facts, we can deduce that get_value
returns a reference to an item inside the numbers Vec.

fn main() {
let numbers = vec![

1,
2,
3,
4,
5,

];

let value = get_value(
&numbers,
"Getting the number",

);

println!(
"value: {}",
value,

);
}

fn get_value<'a>(
numbers: &'a Vec<i32>,
s: &str,

) -> &'a i32 {
println!("{}", s);
&numbers[0]

}

value

numbers

get_value

'a

'a

"Getting the
number"

main

s

numbers
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You can always provide these lifetime annotations any time there is a reference argu-

ment to a function, but most of the time they are not necessary because the compiler

can safely infer them. Just as correctly, we can write the signature to get_value like

this:

fn get_value<'a, 'b>(numbers: &'a Vec<i32>, s: &'b str) -> &'a i32

This signature is explicit in naming the lifetime of the s reference as 'b, but the com-

piler does not need to know this information because 'b does not interact with any

values other than s. The compiler automatically inserts these additional unnecessary

lifetime rules into our code when we do not provide them, but it is technically correct

(if stylistically undesirable) to name all lifetimes in function parameters explicitly.

 In cases where the compiler cannot infer the lifetime information from the type

signature alone, such as functions with multiple reference parameters and a reference

return value, it needs to get this information from us. It cannot deduce it from the

inside of the function because the output lifetime is effectively part of the public API

contract of a function. If the compiler were to determine the output lifetime by look-

ing at the code in the function body, you could have breaking API changes without

changing function signatures. It is far less dangerous to ask the developer to write the

annotations themselves to ensure that functions with complex lifetimes in their public

APIs do not experience breaking changes.

 Now that we understand a bit about the purpose and use of lifetime annotations,

let’s jump back to our NGINX plugin code. 

4.4.2 Lifetime annotations in our NGINX plugin

We will specifically look at the request_body_as_str function. Recall that we’re look-

ing at the following function signature:

unsafe fn request_body_as_str<'a>(
request: &'a ngx_http_request_t,

) -> Result<&'a str, &'static str>

Now that we understand how lifetime annotations work, we know that this signature

indicates that the string returned from this function is, in fact, borrowed from the

same memory as the request variable. We can therefore infer that the function does

not reallocate any strings and simply reinterprets the memory underlying the NGINX

request struct. 

 The returned string slice is guaranteed to live for exactly as long as the request ref-

erence passed into it. This makes sense because the string slice returned from the

function points to memory that is owned by the NGINX request struct. It wouldn’t be

valid to deallocate the request and keep references to the body string around. The

Rust lifetime system is used here to validate a property of our code that would other-

wise be difficult to express—how these two pieces of memory are directly related to

each other in a hierarchy. The request body cannot outlive the request struct, and we

are protected from assuming that it will.
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 Now, let’s look at the body of our function. We will first look at the function call

std::slice::from_raw_parts in the middle of our function because it informs every-

thing else that’s going on. Before we can explore how this function works, we must

talk about slices. 

 A slice is a contiguous block of memory containing elements of the same type, sim-

ilar to an array or vector. However, a slice’s representation is just a pointer and a

length, so it can act as a cheap "view" of many underlying storages. This is essentially

the same as the difference between a String (owned, growable, mutable) and an &str

(read-only, view, may be from String or from &'static str). Figure 4.8 illustrates a

String and multiple &str slices that point to substrings of it.

Figure 4.8 Taking multiple slices of the same string

Recall from chapter 3 that we were able to create a string reference (more correctly

called a string slice) from a null-terminated C string. This string slice was not reallo-

cated by Rust; we simply took a read-only view of the bytes that were passed to us by C.

Since NGINX is passing us pointers into the request body buffers, we can similarly cre-

ate a string slice that holds the request body. To do this, we must first create a slice of

raw bytes (the type for this is written &[u8]). Then, we can turn this byte slice into a

string slice after verifying that it is valid UTF-8 (required for all Rust strings). 

 To construct the slice, we use a slightly different method than the string slice con-

struction code that we wrote in chapter 3. That code assumed we would be passed a null-

terminated string and used the CStr helper struct. However, NGINX does not use null-

terminated strings; instead, it passes around start and end pointers. Consequently, we

let message = String::from("Hello world and all who inhabit it!"):

let start = &message[0..11];
// start == "Hello world"

let end = &message[16..35];
// end == "who inhabit it!"

Hello World and all who inhabit it!

Length

Ptr

11

Length

Ptr

19
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need to use the slightly lower-level function std::slice::from_raw_parts. This func-

tion takes a start pointer and a length and converts them into a Rust slice. 

 Now, starting from the top of the function, the first thing we have is a group of null

checks. You may notice something odd about these null checks, however. Let’s take a

look:

if request.request_body.is_null()
|| (*request.request_body).bufs.is_null()
|| (*(*request.request_body).bufs).buf.is_null()

{
return Err("Request body buffers were

not initialized as expected");
}

The first check seems normal enough, but subsequent checks have some odd syntax.

The parenthesis and asterisk are how we access struct fields behind a pointer in Rust.

It is equivalent to the -> operator in C or C++; Rust just lacks a dedicated operator for it. 

 It may be helpful to take a look at the structure of these types. This is a simplified

look at the structure because the real types involved have a huge number of fields.

ngx_http_request_t alone has up to (depending on compiler flags) 144 fields!

struct ngx_http_request_t {
request_body: *mut ngx_http_request_body_t,
...

}

struct ngx_http_request_body_t {
bufs: *mut ngx_chain_t,
...

}

struct ngx_chain_t {
buf: *mut ngx_buf_t,
...

}

struct ngx_buf_t {
last: *mut u_char,
...

}

This example shows equivalent operations for creating a stack-allocated struct and

printing out a member based on a pointer in both C and Rust:

typedef struct {
x int

} foo_t;
foo_t foo = { 1 };
foo_t *foo_p = &foo;
printf("%d\n", foo_p->x);

struct Foo {
x: i32,

C code

Rust code
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}
let foo = Foo { x: 1 };
let foo_p: *const Foo = &foo;
unsafe {

println!("{}", (*foo_p).bar);
}

This code is reasonable enough for a single field access, but it can get a bit unwieldy

when dealing with a larger C struct that has many nested pointer fields. The final null

check in our body-getter function has only two nested pointer field accesses, and it’s

already a bit difficult to parse:

(*(*request.request_body).bufs).buf.is_null()

After the null checks, we find a new method call that we have not seen before:

let len = (*buf).last.offset_from(start) as usize;

When constructing string slices from raw pointers, we must first create a slice of bytes

using the Rust function std::slice::from_raw_parts. This function takes two argu-

ments, a pointer for the start of the slice and the length of the slice. NGINX provides

a start and end pointer for its string types. To get the length of the string memory

region, we can use the offset_from method on any pointer to get the memory offset

between the end pointer and the start pointer. If we needed this information in C, we

could use simple pointer arithmetic, but the pointer functions that Rust provides are a

bit more descriptive. The following C and Rust functions accomplish the same goal of

finding the size of a memory block between two pointers: 

ptrdiff_t offset(char *start, char *end) {
end - start

}

fn offset(start: *const u8, end: *const u8) -> usize {
end.offset_from(start) as usize

}

You may notice that the Rust code also has a cast to the usize type because the off-

set_from method can return a negative number if start is greater than end, so it

returns an isize. usize is the unsigned pointer size type, and isize is its signed

equivalent. The std::slice::from_raw_parts function requires the length argu-

ment to be a usize, as constructing a slice of memory with a negative length doesn’t

make much sense. Therefore, we must convert isize to usize using an as usize cast

expression. Because isize is guaranteed to be the same size as usize, this casting is a

no-op and will never fail. 

 We already discussed the std::slice::from_raw_parts function; the only thing

left is the code that turns the byte slice into a string slice. std::str::from_utf8 per-

forms a UTF-8 validity check on a slice of bytes and, if it passes, returns a Rust string

slice. 

C code

Rust code



124 CHAPTER 4 Advanced FFI

 After all this code runs and assuming no errors are raised, we have a string slice

containing the request body that our NGINX HTTP handler received. Now that we

understand how our handler function works, let’s verify that we can extract the details

we expect:

$ cargo build
$ ./nginx-1.19.3/objs/nginx -c nginx.conf -p ngx-run
....
Read request body: "3 4 * 2 -"

# Concurrently, in a separate window after NGINX is started
$ curl -X POST -d '3 4 * 2 -' http://localhost:8080/calculate
# this command will block forever

We’ve done it! Rust is reading the HTTP request body from NGINX. We haven’t yet

added the code to write out the HTTP response so curl will block until you exit it, but

we are getting close to solving math from NGINX. 

4.5 Using our calculator library

The calculator library we wrote for chapter 3 is already written, and we can use it to

solve the same kind of RPN math problems that we expect this endpoint to receive.

Let’s try to add it to our NGINX handler project and do some math! First, we’ll need

to add the calculate crate as a dependency for our handler crate. Open the

Cargo.toml in the handler project and add a new line to the [dependencies] section:

[dependencies]
calculate = { path = "../calculate" }

Normally, when we manage a dependency with Cargo, it pulls the dependency from

crates.io. Since we don’t want to publish our calculate library just yet, we can set up

the calculate crate as a path dependency. So, the Cargo will look at the specified

path as the location to search for the crate instead of crates.io. The path specified

here assumes that you have a folder structure that looks like this:

some_directory/
calculate/

Cargo.toml
src/

lib.rs
ngx_http_calculator_rs/

Cargo.toml
src/

lib.rs

If not, you can set the path in quotes to the relative or absolute path of the crate direc-

tory for your calculate crate as appropriate. 

 Next, we can call the evaluate function from our calculate crate from inside of

our NGINX HTTP handler function. Let’s see what that would look like:

unsafe extern "C" fn read_body_handler(r: *mut ngx_http_request_t)
{
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if r.is_null() {
eprintln!("got null request in body handler");
return;

}

let request = &*r;

let body = match request_body_as_str(request) {
Ok(body) => body,
Err(e) => {

eprintln!("failed to parse body: {}", e);
return;

}
};

match calculate::evaluate(body) {
Ok(result) => eprintln!("{} = {}", body, result),
Err(e) => eprintln!("{} => error: {}", body, e),

}
}

Now let’s compile our handler function and try to run it:

$ cargo build
warning: The package `calculate` provides no linkable target.
The compiler might raise an error while compiling
`ngx_http_calculator_rs`. Consider adding 'dylib' or 'rlib' to
key `crate-type` in `calculate`'s Cargo.toml. This warning
might turn into a hard error in the future.

Compiling ngx_http_calculator_rs v0.1.0
error[E0433]: failed to resolve: use of undeclared type or

module `calculate`
--> src/lib.rs:35:9
|

35 | match calculate::evaluate(body) {
| ^^^^^^^^^ use of undeclared type or module `calculate`

Our code does not compile! Why? If you recall from chapter 3, we told Cargo to com-

pile our calculate crate as a C-compatible dynamic library. This works great for link-

ing against C code, but it turns out that it doesn’t work so well for linking against Rust

code. We can resolve this error by telling Cargo to generate a Rust-compatible rlib in

addition to a cdylib. The default for Cargo is to only generate rlib files, but if you

override this setting, you lose the default. Open the Cargo.toml file in the calculate

package and edit the crate-type field under the [lib] heading:

[lib]
crate-type = ["rlib", "cdylib"]

Cargo will generate both types of library files when it is configured like this, so we don’t

need to worry about losing any functionality. Let’s try running that compile again:

$ cargo build
Compiling ngx_http_calculator_rs v0.1.0
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error[E0603]: function `evaluate` is private
--> src/lib.rs:35:20
|

35 | match calculate::evaluate(body) {
| ^^^^^^^^ private function
|

note: the function `evaluate` is defined here
--> calculate/src/lib.rs:73:1
|

73 | fn evaluate(problem: &str) -> Result<i32, Error> {
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Now we can’t compile because evaluate is a private function. Remember that, when

we exposed the solve function from Rust to C, we needed to add the pub keyword to

the function declaration to tell the compiler that it should be visible outside of the

crate. We need to do the same here with the evaluate function. The definition should

change to look like this:

pub fn evaluate(problem: &str) -> Result<i32, Error> {

Rerunning the compiler gives us yet another new error:

$ cargo build
Compiling calculate v0.1.0

error[E0446]: private type `Error` in public interface
--> calculate/src/lib.rs:73:1
|

35 | enum Error {
| - `Error` declared as private

...
73 | pub fn evaluate(problem: &str) -> Result<i32, Error> {

| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
| can't leak private type

When an item (function, struct, or enum) is exposed publicly, the compiler tries to pre-

vent the creation of an unusable API. In this function, for example, we mark a function

as public, but part of its return type is private. If someone wanted to use this function

and an error occurred, they would not be able to determine what kind of error it was.

This outcome would not be good, so it is a good thing that the compiler prevented it.

 As you may have already guessed, to resolve this error we need to also mark our

Error enum as public. The definition of our error enum now becomes 

pub enum Error {
InvalidNumber,
PopFromEmptyStack,

}

After we make this edit, we should be able to recompile our code with no errors:

$ cargo build
Compiling calculate v0.1.0
Compiling ngx_http_calculator_rs v0.1.0
Finished dev [unoptimized + debuginfo] target(s) in 6.75s
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The bulk of the lib.rs file in the calculate crate remains unchanged from chapter

3; the changed lines are shown in the following listing. 

...

pub enum Error {
InvalidNumber,
PopFromEmptyStack,

}

...

pub fn evaluate(problem: &str) -> Result<i32, Error> {
...

}

The next listing shows what our read_body_handler function should look like after

we’re done. 

unsafe extern "C" fn read_body_handler(r: *mut ngx_http_request_t)
{

if r.is_null() {
eprintln!("got null request in body handler");
return;

}

let request = &*r;

let body = match request_body_as_str(request) {
Ok(body) => body,
Err(e) => {

eprintln!("failed to parse body: {}", e);
return;

}
};

match calculate::evaluate(body) {
Ok(result) => eprintln!("{} = {}", body, result),
Err(e) => eprintln!("{} => error: {}", body, e),

}
}

Now that we can build our HTTP handler along with the calculate library, we can

run NGINX with the new version of our module:

$ cargo build
$ ./nginx-1.19.3/objs/nginx -c nginx.conf -p ngx-run
....
3 4 * 2 - = 10

Listing 4.14 Changes required in the calculate crate

Listing 4.15 HTTP handler printing the result of a math expression
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# Concurrently, in a separate window after NGINX is started
$ curl -X POST -d '3 4 * 2 -' http://localhost:8080/calculate
# this command will block forever

We are so close! We have linked C to Rust, read out the request body from the NGINX

HTTP request struct, reused our existing calculate library, and solved a math prob-

lem. The only thing left is to write the result of our calculation into the HTTP

response. 

4.6 Writing the HTTP response

Our HTTP response is going to contain the result of our math expression in text

form. It’s easy enough to go from an i32 to a String in Rust using the format! macro:

match calculate::evaluate(body) {
Ok(result) => {

eprintln!("{} = {}", body, result)

let response_body = format!("{}", result);
},
Err(e) => eprintln!("{} => error: {}", body, e),

}

Going from this string to the NGINX response body is a bit more complicated. We’re

going to need to write another function that creates a number of intermediate structs

and copies the memory from our String into an NGINX type. The full contents of

this function are as follows:

unsafe fn write_response(
request: &mut ngx_http_request_t,
response_body: &str,
status_code: ngx_uint_t,

) -> Result<(), &'static str> {
let headers = &mut request.headers_out;

headers.status = status_code;

let response_bytes = response_body.as_bytes();
headers.content_length_n = response_bytes.len() as off_t;

let rc = ngx_http_send_header(request);
if rc != 0 {

return Err("failed to send headers");
}

let buf_p =
ngx_pcalloc(request.pool, std::mem::size_of::<

ngx_buf_t>() as size_t)
as *mut ngx_buf_t;

if buf_p.is_null() {
return Err("Failed to allocate buffer");

}

Writes out the 
HTTP status code

Creates an 
NGINX “buffer”
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let buf = &mut (*buf_p);

buf.set_last_buf(1);
buf.set_last_in_chain(1);
buf.set_memory(1);

let response_buffer =
ngx_pcalloc(request.pool, response_bytes.len() as size_t);

if response_buffer.is_null() {
return Err("Failed to allocate response buffer");

}

std::ptr::copy_nonoverlapping(
response_bytes.as_ptr(),
response_buffer as *mut u8,
response_bytes.len(),

);

buf.pos = response_buffer as *mut u8;
buf.last = response_buffer.offset(

response_bytes.len() as isize) as *mut u8;

let mut out_chain = ngx_chain_t {
buf,
next: std::ptr::null_mut(),

};

if ngx_http_output_filter(request, &mut out_chain) != 0 {
return Err("Failed to perform http output filter chain");

}

Ok(())
}

Now this function is doing a lot of different things, so let’s at a look at all of them. Our

function performs the following high-level steps:

1 Writes out the HTTP status code and content length header

2 Creates an NGINX “buffer” object

3 Configures the NGINX buffer so that it will be correctly deallocated by NGINX

4 Allocates a string buffer to store the response body

5 Copies the response body bytes from the Rust string slice into the NGINX

buffer

6 Passes our response body buffer into the NGINX HTTP output handlers

The order of operations is fairly standard for HTTP response operations. First, we

must write out the response headers:

let headers = &mut request.headers_out;

headers.status = status_code;

Configures the 
buffer for cleanup

Allocates a 
string buffer 
to store the 
response

Copies response body 
into a string buffer

Passes the 
response into 
the NGINX 
output 
handlers

headers_out is a field of the request 
variable that holds information on the 
headers that will be output to the 
client with the HTTP response.
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let response_bytes = response_body.as_bytes();
headers.content_length_n = response_bytes.len() as off_t;

let rc = ngx_http_send_header(request);
if rc != 0 {

return Err("failed to send headers");
}

Every HTTP response begins with a line containing the protocol version and the sta-

tus code, followed by a number of lines containing the header data. The Content-

Length header must always be set when a response body is provided that does not use

the chunked response encoding. Therefore, before we can do anything with the

response body text, we must write out the status code and the content length. The sta-

tus code is provided to this function as an argument, and the content length can be

calculated based on the number of bytes in the response body string. Once we have

these two values set, we call the ngx_http_send_header function, which writes out the

header data on the connection. 

 Next, we allocate ngx_buf_t to hold information about our response buffer. Let’s

see that part of the code:

let buf_p =
ngx_pcalloc(request.pool, std::mem::size_of::<

ngx_buf_t>() as size_t)
as *mut ngx_buf_t;

if buf_p.is_null() {
return Err("Failed to allocate buffer");

}

let buf = &mut (*buf_p);

buf.set_last_buf(1);
buf.set_last_in_chain(1);
buf.set_memory(1);

First, we use the ngx_pcalloc function. This is an allocation function that NGINX

provides, similar to the C standard malloc function. It uses a pool of memory that is

local to each request object to allocate the requested amount of memory. 

 These memory pools provide a mechanism very similar to Rust’s ownership system,

but they are specific to NGINX and require more run-time work. Each pool will deal-

locate its contents when the pool is deallocated, so when we finish handling the

request, all the temporary buffers that were created in its pool will be deallocated.

This deallocation allows plugin authors to allocate memory with the same lifetime as

the request itself, without too much worry about setting up extra cleanup code.

 A few new Rust concepts are found here; the first is the function

std::mem::size_of<T>. This function returns the size in bytes of whatever type is

Every Rust string (and string slice) is a collection of bytes that 
forms a valid UTF-8 text. We can go from the string 
representation to a slice of bytes using the as_bytes method.

off_t is the pointer offset type,
and it comes from the

autogenerated NGINX bindings;
it is not a standard Rust type.
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passed to it in the type argument position. This allows us to tell the NGINX allocator

how many bytes it should allocate to safely store our buffer. After a null check, we per-

form a mutable reborrow of the newly allocated pointer, so that we don’t need to

dereference it each time we want to use it. 

 Finally, we use some set_ functions to initialize some settings that tell NGINX how

our buffer should be handled. The exact meaning of these functions is quite specific

to NGINX, but there is something interesting about these functions for our purposes.

To see that, we will need to look at the definition of these fields on the ngx_buf_t

type:

struct ngx_buf_t {
... (some fields omitted)
unsigned memory:1;
unsigned last_buf:1;
unsigned last_in_chain:1;

};

The three set_ functions that we call (set_last_buf, set_memory, and set_last_in_

chain) correspond with the bitfields (last_buf, memory, and last_in_chain) at the

end of the ngx_buf_s type. Rust’s bindgen tool generates set and get functions for

these bitfields because Rust does not natively support them. Other than these func-

tions, there is no good way to interact with these bitfields. 

 The next part of the function is quite straightforward: we allocate a block of mem-

ory to store the response body in, and we copy the data from our Rust string slice into

this block. It is technically possible to simply pass NGINX a pointer to our Rust string

slice, but Rust will deallocate the string when it goes out of scope, and the pointer will

become invalid. We need to reallocate this string into a buffer owned by NGINX, as

this is more straightforward than attempting to coordinate Rust’s ownership system

with NGINX (this may be possible but it will not be explored here):

let response_buffer =
ngx_pcalloc(request.pool, response_bytes.len() as size_t);

if response_buffer.is_null() {
return Err("Failed to allocate response buffer");

}

std::ptr::copy_nonoverlapping(
response_bytes.as_ptr(),
response_buffer as *mut u8,
response_bytes.len(),

);

We use the same ngx_pcalloc function as before, but this time we do not need to use

std::mem::size_of because we are allocating a known number of bytes, rather than

instances of a complex type. The function std::ptr::copy_nonoverlapping works

the same as the C standard library memcpy function, with the order of the source and

destination pointers flipped. It copies each byte from the Rust string slice into the

newly allocated buffer. 

Uses as_ptr method to 
get a pointer to the 
first element in a slice
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 After copying the data, we perform the final setup before passing our completed

request back to NGINX so that it can perform the required IO operations to send our

data across the network:

buf.pos = response_buffer as *mut u8;
buf.last = response_buffer.offset(

response_bytes.len() as isize) as *mut u8;

let mut out_chain = ngx_chain_t {
buf,
next: std::ptr::null_mut(),

};

We set the appropriate fields of our ngx_buf_t to the start and end pointers of the

block of memory we just allocated. To get the end pointer for our block of memory,

we need a new method, .offset. .offset is basically the opposite of offset_from,

which returns the difference between two pointers. .offset takes a pointer and a

number N, and returns a new pointer, which is N pointers away from the base pointer.

Figure 4.9 shows a decision tree you can use to pick which method is appropriate for

your use case. 

Figure 4.9 Decision between pointer/offset conversion methods

We put the buffer into an ngx_chain_t. This type is essentially a linked list of blocks of

memory. Since we just have a single block, we initialize the chain with our single buffer,

and a null pointer in the slot that would otherwise point to the next item in the chain. 

 Finally, with all of the configuration done and our buffers full of data, we can tell

NGINX to start writing out the response data to the client:
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if ngx_http_output_filter(request, &mut out_chain) != 0 {
return Err("Failed to perform http output filter chain");

}

Ok(())

The ngx_http_output_filter function takes a pointer to a request and a pointer to

an ngx_chain_t and handles writing out the response data to the client. After calling

this, we return an Ok(()) to let the caller know that everything went as expected. 

 Now we can call it from our read_body_handler function:

unsafe extern "C" fn read_body_handler(r: *mut ngx_http_request_t)
{

if r.is_null() {
eprintln!("got null request in body handler");
return;

}

let request = &mut *r;

let body = match request_body_as_str(request) {
Ok(body) => body,
Err(e) => {

eprintln!("failed to parse body: {}", e);
return;

}
};

match calculate::evaluate(body) {
Ok(result) => {

let response_body = format!("{}", result);

match write_response(request, &response_body, 200) {
Ok(()) => {}
Err(e) => {
eprintln!("failed to write HTTP response: {}", e);

}
}

}
Err(e) => eprintln!("{} => error: {}", body, e),

}
}

Let’s recompile the code and try using our HTTP handler:

$ cargo build
$ ./nginx-1.19.3/objs/nginx -c nginx.conf -p ngx-run
....

# Concurrently, in a separate window after NGINX is started
$ curl -X POST -d '3 4 * 2 -' http://localhost:8080/calculate; echo
10

The reborrow of our request pointer needs to 
turn into a mutable reborrow, which allows 
us to later mutate the fields of our request.

The extra echo command here is because there is no newline at
the end of the HTTP response, so it may be difficult to see the
output of curl without this echo command adding a newline.
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We did it! We have successfully created a Rust crate that provides an NGINX HTTP

handler that performs math. It required a lot of steps and a lot of changes to the code

files. The following listing provides the final version of what the lib.rs file should

look like in your project.

include!(concat!(env!("OUT_DIR"), "/nginx.rs"));

#[no_mangle]
pub unsafe extern "C" fn ngx_http_calculator_handler(

r: *mut ngx_http_request_t,
) -> ngx_int_t {

let rc = ngx_http_read_client_request_body(
r, Some(read_body_handler));

if rc != 0 {
return rc;

}

0
}

unsafe extern "C" fn read_body_handler(r: *mut ngx_http_request_t)
{

if r.is_null() {
eprintln!("got null request in body handler");
return;

}

let request = &mut *r;

let body = match request_body_as_str(request) {
Ok(body) => body,
Err(e) => {

eprintln!("failed to parse body: {}", e);
return;

}
};

match calculate::evaluate(body) {
Ok(result) => {

let response_body = format!("{}", result);

match write_response(request, &response_body, 200) {
Ok(()) => {}
Err(e) => {
eprintln!("failed to write HTTP response: {}", e);

}
}

}
Err(e) => eprintln!("{} => error: {}", body, e),

}
}

Listing 4.16 Full calculator HTTP handler
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unsafe fn request_body_as_str<'a>(
request: &'a ngx_http_request_t,

) -> Result<&'a str, &'static str> {
if request.request_body.is_null()

|| (*request.request_body).bufs.is_null()
|| (*(*request.request_body).bufs).buf.is_null()

{
return Err("Request body buffers were not

initialized as expected");
}

let buf = (*(*request.request_body).bufs).buf;

let start = (*buf).pos;
let len = (*buf).last.offset_from(start) as usize;

let body_bytes = std::slice::from_raw_parts(start, len);

let body_str = std::str::from_utf8(body_bytes)
.map_err(|_| "Body contains invalid UTF-8")?;

Ok(body_str)
}

unsafe fn write_response(
request: &mut ngx_http_request_t,
response_body: &str,
status_code: ngx_uint_t,

) -> Result<(), &'static str> {
let headers = &mut request.headers_out;

headers.status = status_code;

let response_bytes = response_body.as_bytes();
headers.content_length_n = response_bytes.len() as off_t;

let rc = ngx_http_send_header(request);
if rc != 0 {

return Err("failed to send headers");
}

let buf_p =
ngx_pcalloc(request.pool, std::mem::size_of::<

ngx_buf_t>() as size_t)
as *mut ngx_buf_t;

if buf_p.is_null() {
return Err("Failed to allocate buffer");

}

let buf = &mut (*buf_p);

buf.set_last_buf(1);
buf.set_last_in_chain(1);
buf.set_memory(1);
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let response_buffer =
ngx_pcalloc(request.pool, response_bytes.len() as size_t);

if response_buffer.is_null() {
return Err("Failed to allocate response buffer");

}

std::ptr::copy_nonoverlapping(
response_bytes.as_ptr(),
response_buffer as *mut u8,
response_bytes.len(),

);

buf.pos = response_buffer as *mut u8;
buf.last = response_buffer.offset(

response_bytes.len() as isize) as *mut u8;

let mut out_chain = ngx_chain_t {
buf,
next: std::ptr::null_mut(),

};

if ngx_http_output_filter(request, &mut out_chain) != 0 {
return Err("Failed to perform http output filter chain");

}

Ok(())
}

These 127 lines of Rust code have a lot of new ideas in them, but a lot of holdover C

idioms can also be found in this code. Temporary buffers, unsafe function calls, and a

number of other things that wouldn’t appear in normal Rust code are built directly

into our handler functions. The next chapter covers techniques that we can use to

organize larger Rust code files into separate modules. 

Summary

 bindgen can be used to generate Rust bindings for C and C++ code.

 Build scripts allow developers to write Rust code that runs at compile time.

 include! inserts a text file into our Rust source code files at compile time and

compiles it as Rust code.

 Not all extern "C" functions need to be #[no_mangle].

 Reborrowing lets us treat raw pointers as standard Rust references.

 .offset_from gets the difference in bytes between two pointers.

 std::slice::from_raw_parts constructs a view onto a contiguous block of

memory from a pointer and a length.

 Path dependencies are used by Cargo to include crates that are on your

machine, rather than uploaded to crates.io.

 Crates can be compiled as both rlib (for Rust) and cdylib (for C).

 When marking an item as pub, the compiler expects that all types that are part

of its public API are also pub.
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 bindgen creates get_ and set_ functions for C bitfields automatically.

 Slices are contiguous borrowed views of a region of memory. 

 .as_ptr returns a pointer to the first element in a slice.

 .offset returns a pointer that is N elements away from the base pointer in a

contiguous block.

 std::mem::size_of is the Rust equivalent of sizeof.

 std::ptr::copy_nonoverlapping is the Rust equivalent of memcpy.
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Structuring Rust libraries

Virtually all programming languages have features that allow code to be divided

into groups of items. So far, all the code examples that we have seen have used a flat

namespace. In this chapter we will look at Rust’s powerful module system and how

you can use it to structure your crates.

5.1 Modules

In Rust, a module is a container for holding items. An item is a component of a crate

such as a function, struct, enum, or type (there are others, but let’s just worry about

these for now). We have already used modules from the standard library when we

imported the Display trait from the fmt module of the std crate. The std crate is

the Rust standard library, and the fmt module contains items that help with text

formatting, such as the Display and Debug traits. 

This chapter covers

 Organizing Rust code using modules

 Understand how paths work in relation to Rust 

modules

 Working with visibility rules
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 Let’s imagine that we wanted to organize a small program that gets a user’s name

and then says hello and goodbye to the user. Create a new Cargo project called greet-

ings and add the following code listing to the src/main.rs file. 

use std::io::stdin;

fn main() {
let name = get_name();

hello(&name);
goodbye(&name);

}

fn get_name() -> String {
let mut name = String::new();

println!("Please enter your name");
stdin().read_line(&mut name).unwrap();

name
}

fn goodbye(name: &str) {
println!("Goodbye, {}", name);

}

fn hello(name: &str) {
println!("Hello, {}", name);

}

If we run it, we see that we have created a very polite program:

$ cargo run
Please enter your name
Thalia
Hello, Thalia

Goodbye, Thalia

We may want to organize these functions into two modules---one for input functions

like get_name and one for output functions like hello and goodbye. Modules can be

created in Rust code using the mod keyword followed by a module name and then the

contents of the module inside of curly braces ({}). 

 Let’s create the input and output modules now. 

fn main() {
let name = get_name();

Listing 5.1 Code to get a user’s name and greet them

Listing 5.2 User greeting program with modules added

The read_line function reads 
a line of text from stdin and 
copies it to a String buffer.
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hello(&name);
goodbye(&name);

}

mod input {
use std::io::stdin;

fn get_name() -> String {
let mut name = String::new();

println!("Please enter your name");
std::io::stdin().read_line(&mut name).unwrap();

name
}

}

mod output {
fn goodbye(name: &str) {

println!("Goodbye, {}", name);
}

fn hello(name: &str) {
println!("Hello, {}", name);

}
}

If we try to run this now, we’ll be hit with a trio of compiler errors:

$ cargo run
error[E0425]: cannot find function `get_name` in this scope
--> src/main.rs:2:14
|

2 | let name = get_name();
| ^^^^^^^^ not found in this scope
|

help: consider importing this function
|

1 | use input::get_name;
|

... (same error for `hello` and `goodbye`)

Thankfully, these error messages come with hints on how to resolve them. Because we

put all our functions within the input and output modules, they’re no longer in the

same namespace as the main function. We can resolve this problem in a few different

ways—one of which is highlighted in the help text the compiler provides us. We can

add a use statement above our main function to import the get_name, hello, and

goodbye functions from their modules. 

 For now, let’s include the use statements that the compiler indicated to us. We can

even combine the two statements for the output module into one. 
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use input::get_name;
use output::{goodbye, hello};

fn main() {
let name = get_name();

hello(&name);
goodbye(&name);

}

...

Let’s try running our code again:

$ cargo run
error[E0603]: function `get_name` is private

--> src/main.rs:1:19
|

1 | use input::get_name;
| ^^^^^^^^ private function
|

note: the function `get_name` is defined here
--> src/main.rs:14:3
|

14 | fn get_name() -> String {
| ^^^^^^^^^^^^^^^^^^^^^^^

... (same error for `hello` and `goodbye`)

The compiler can resolve the names now, but our use statements are causing errors

because we’re attempting to import private functions. Recall from chapter 3 that all

functions in Rust are private by default and must be explicitly marked as public. To do

that, we need to add the pub keyword before the definitions of our functions. Let’s do

this now. 

...

mod input {
use std::io::stdin;

pub fn get_name() -> String {
let mut name = String::new();

println!("Please enter your name");
stdin().read_line(&mut name).unwrap();

name
}

}

Listing 5.3 Greeting program with use statements added

Listing 5.4 Greeting program with public functions in its modules
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mod output {
pub fn goodbye(name: &str) {

println!("Goodbye, {}", name);
}

pub fn hello(name: &str) {
println!("Hello, {}", name);

}
}

Now we can run our program, and it will work as it did originally:

$ cargo run
Please enter your name
Pyramus
Hello, Pyramus

Goodbye, Pyramus

5.1.1 Who cares?

We have succeeded in repeating the functionality of our original program by adding a

lot more syntax. So what? Why would someone want to go through the trouble of add-

ing mod, use, and pub all over their code instead of putting everything in one large

module? For many people, thinking about a few related functions in a single module

is easier than thinking about every function in the program at once. If you’re dealing

with a bug in the database interaction of a program, it may be easier to track down if

all the database code is in the same spot instead of being mixed around with HTTP,

logging, timing, or threading code in a single global namespace. People generally like

sorting related items into groups and categorizing them; modules are simply how we

sort in Rust. Figure 5.1 shows a graph of the modules in this greeting program. 

Figure 5.1 Graph of greeting program

We can also create modules that live in their own files. Let’s look at how we can do

that.

<crate root>

fn main

fn get_name fn hello fn goodbye

mod input mod output
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5.1.2 Multiple files

Right now, the input and output modules are in the same main.rs file as the rest of

the code. Unless your modules are very small, it is generally considered best practice

to place modules within their own files. To do so, we create a new file named mod-

ule.rs, replacing module with the name of the module that we’re creating. For our

purposes, we will create input.rs and output.rs. 

use input::get_name;
use output::{goodbye, hello};

mod input;
mod output;

fn main() {
let name = get_name();

hello(&name);
goodbye(&name);

}

use std::io::stdin;

pub fn get_name() -> String {
let mut name = String::new();

println!("Please enter your name");
stdin().read_line(&mut name).unwrap();

name
}

pub fn goodbye(name: &str) {
println!("Goodbye, {}", name);

}

pub fn hello(name: &str) {
println!("Hello, {}", name);

}

The program still functions as intended after these changes:

$ cargo run
Please enter your name
world
Hello, world

Goodbye, world

Listing 5.5 Greeter program main.rs

Listing 5.6 Greeter program input.rs

Listing 5.7 Greeter program output.rs

The mod statements change in subtle ways. We 
move them to the top of the file, which is a style 
choice, and we remove the curly braces for the 
contents in favor of a semicolon, which indicates that 
we are using a file for this module instead of a block.
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NOTE Many programming languages use the implicit structure of the file-
system to construct a module hierarchy. Rust requires the mod statement in
the source code to tell the compiler which files to look in. To tell the Rust
compiler about the file src/bananas.rs, you must include mod bananas at
the root of the crate. If you wanted to put bananas.rs within a forest mod-
ule, you would need to place it in src/forest/bananas.rs; src/forest.rs
would need to contain mod bananas; and mod forest would need to be at the
crate root. 

It is important to point out that, as far as the compiler knows, there are no differences

between modules that use the block syntax (mod my_mod { … }) and modules that use

separate files for code (mod my_mod;). Both provide exactly the same amount of isola-

tion; the only differences are the style differences that the programmer sees from

them.

 One helpful stylistic reason to place modules within their own files is that some

developers find it helpful to be able to jump to specific files with known contents. It is

easier in most text editors, for example, to open a file called http.rs than it is to

search a 10,000-line-long lib.rs file for a module named http. 

 Now that we have divided our code into modules, let’s look at how it might change

when some new features are added. Imagine that we need to update our program to

ask the user whether they had a good day and respond appropriately. At a high level,

we may want to create items that look like this:

enum DayKind {

Good,

Bad,

}

fn get_day_kind() -> DayKind {

...

}

fn print_day_kind_message(day_kind: DayKind) {

...

}

With the current setup of our code, where do these items belong? get_day_kind prob-

ably belongs in the input module since it is taking input from the user, and print_

day_kind_message similarly belongs in output since it writes a message to the user.

Where, then, does the DayKind enum go? It’s not directly related to either input or

output, so conceptually it doesn’t belong with either one. Let’s create a new module

for it. We’ll call this one day_kind; it will go into day_kind.rs, and the only thing in it

will be our new enum. We also need to add mod day_kind; to our main.rs file. These

files should now look like the following listings. 
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use input::get_name;
use output::{goodbye, hello};

mod day_kind;
mod input;
mod output;

fn main() {
let name = get_name();

hello(&name);
goodbye(&name);

}

pub enum DayKind {
Good,
Bad,

}

Now, let’s write our output function, which is responsible for printing a message to the

user about how their day was. We will write it in output.rs. 

use day_kind::DayKind;

pub fn print_day_kind_message(day_kind: DayKind) {
match day_kind {

DayKind::Good => println!("I'm glad to hear you're having a good day!"),
DayKind::Bad => println!("I'm sorry to hear you're having a bad day"),

}
}

Let’s try to run our program now:

$ cargo run
error[E0432]: unresolved import `day_kind`
--> src/output.rs:1:5
|

1 | use day_kind::DayKind;
| ^^^^^^^^ help: a similar path exists: `crate::day_kind`
|

Our code does not compile. The compiler provides us with help text that will make

this code compile, but we are going to dive a little bit deeper into how Rust handles

paths. 

Listing 5.8 Day kind in main.rs

Listing 5.9 Day kind in day_kind.rs

Listing 5.10 Day kind in output.rs

DayKind is now public so that 
it can be accessed from the 
other modules in our crate.
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5.2 Paths

Everything with a name (variable, function, struct, enum, type, etc) in Rust can be

referred to by a path. A path is a sequence of names called path segments separated by

the :: characters, which combine to refer to an item or a variable (if the path contains

only one segment). The following listing shows a few examples. 

fn main() {
let value = true;

// All of the lines below this are paths
value;

hello;

std::io::stdin;

std::collections::hash_map::ValuesMut::<i32, String>::len;
}

fn hello() { }

As we can see, paths can be very small or very large, but they are all paths. If we try to

build this program, the compiler will even warn us that all of our statements contain

only paths (which is a no-op):

$ cargo build
warning: path statement with no effect
--> src/main.rs:5:3
|

5 | value;
| ^^^^^^
|
= note: `#[warn(path_statements)]` on by default

warning: path statement with no effect
--> src/main.rs:7:3
|

7 | hello;
| ^^^^^^

warning: path statement with no effect
--> src/main.rs:9:3
|

9 | std::io::stdin;
| ^^^^^^^^^^^^^^^

warning: path statement with no effect
--> src/main.rs:11:3
|

11 | std::collections::hash_map::ValuesMut::<i32, String>::len;
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Listing 5.11 Examples of paths

Path to the local 
Boolean variable value

Path to the function hello 
defined just under the main fn

Path to the stdin function in the 
standard library’s io module

Path to the len function on a ValuesMut iterator for a hash map
containing i32 keys and String values from the hash_map
module within the standard library’s collections module
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The compiler warnings show up because paths by themselves are not too helpful. A

path to a function on a line by itself is not useful; it’s only useful when you actually call

that function. A path to a struct is not useful (nor is it valid syntax); it’s only useful

when you construct an instance of that struct or call an associated function.

 Paths contain an important gotcha that can trip up many new Rust developers—

the subtle difference between relative and absolute paths. 

5.2.1 Relative vs. absolute pathspaths

Relative paths, such as hello in listing 5.11, refer to variables or items within the cur-

rent namespace, and absolute paths, such as std::io::stdin, refer to variables or items

relative to the root of a crate.

 It is helpful to compare paths in Rust with paths on the filesystem. Paths in Rust

have a separation between crates (which always appear at the root of absolute paths)

and modules (which may or may not appear in paths). This is similar to the way that

paths are constructed on Windows operating systems. Relative paths use only directory

names and filenames to indicate where something is located relative to some working

directory, but absolute paths are rooted at a particular I/O drive, like C:. The distinc-

tion between drives and directories on Windows is similar to the distinction between

crates and modules in Rust.

NOTE On Unix-like operating systems, all paths very nicely begin with / as the
root of the filesystem, with files and folders growing down from there. The
Rust namespace system is not quite as simple.

When we need to use an absolute path to refer to items in the current crate, we need

to use the crate keyword, which is a special path segment that means the root of the

current crate. Another special path segment we can use, called super, is used in rela-

tive paths to refer to the namespace above the current namespace. Let’s look at a

small example to see relative and absolute paths in action. Imagine that we are writing

the fictional libsnack crate, which has functions and types to acquire and consume

delicious snacks. Currently, libsnack has a lib.rs file. 

pub mod treats {
pub mod shop {}

pub enum Treat {
Candy,
IceCream,

}

pub struct ConsumedTreat {
treat: Treat,

}
}

Listing 5.12 libsnack crate
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Notice that this example includes modules decorated with the pub keyword. We can

add the pub keyword to modules just as we can with functions, structs, or enums. It

means exactly the same thing for modules as it does for other items. A module with-

out the pub keyword before its definition can only be accessed from the module where

it was declared. If the shop module in listing 5.12 were not pub, we would not be able

to access it from the crate root. We would only be able to access it from within the

treats module. 

 Imagine that we want to add the following three functions to the modules in

libsnack to handle the essential operations of snacking. The buy function will live in

the treats::shop module:

fn buy() -> Treat

eat will be placed in the treats module:

fn eat(treat: Treat) -> ConsumedTreat

Finally, at the root of the crate, we provide the regret function:

fn regret(treat: ConsumedTreat)

All of these functions use types from the treats module of libsnack in their signa-

tures. The paths to these types can all be expressed using either relative or absolute

paths. We will write the functions in both ways to see how the code changes when we

use each type of path. We’ll begin with absolute paths.

pub mod treats {
pub mod shop {

fn buy() -> crate::treats::Treat {
crate::treats::Treat::IceCream

}
}

pub enum Treat {
Candy,
IceCream,

}

pub struct ConsumedTreat {
treat: Treat,

}

fn eat(treat: crate::treats::Treat) -> crate::treats::ConsumedTreat {
crate::treats::ConsumedTreat { treat }

}
}

fn regret(treat: crate::treats::ConsumedTreat) {
println!("That was a mistake");

}

Listing 5.13 Life cycle methods in libsnack using absolute paths
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We can see that this code becomes verbose very quickly. The signature for

treats::eat is particularly hard to read because it requires two large paths on the

same line. Let’s try using only relative paths.

pub mod treats {
pub mod shop {

fn buy() -> super::Treat {
super::Treat::IceCream

}
}

pub enum Treat {
Candy,
IceCream,

}

pub struct ConsumedTreat {
treat: Treat,

}

fn eat(treat: Treat) -> ConsumedTreat {
ConsumedTreat { treat }

}
}

fn regret(treat: treats::ConsumedTreat) {
println!("That was a mistake");

}

This code is a bit easier to read now. The eat function no longer needs any module

qualification whatsoever since it is defined in the same module as the Treat and

ConsumedTreat types that it uses. The downside to relative paths is that, if you move a

function that has a relative type in its signature, you need to rewrite the types relative

to the new location. If we move the regret function into the shop module, for exam-

ple, we would need to change the signature to 

fn regret(treat: super::ConsumedTreat)

Not a big deal when we have only a few functions and types, but these changes can add

up and become frustrating. For that reason, it is often beneficial to combine the use

of absolute and relative paths in Rust code using the use statement we learned about

previously. Let’s see how we can rewrite this crate with use. 

pub mod treats {
pub mod shop {

use crate::treats::Treat;

Listing 5.14 Life cycle methods in libsnack using relative paths

Listing 5.15 Using both relative and absolute paths



150 CHAPTER 5 Structuring Rust libraries

fn buy() -> Treat {
Treat::IceCream

}
}

pub enum Treat {
Candy,
IceCream,

}

pub struct ConsumedTreat {
treat: Treat,

}

fn eat(treat: Treat) -> ConsumedTreat {
ConsumedTreat { treat }

}
}

use crate::treats::ConsumedTreat;

fn regret(treat: ConsumedTreat) {
println!("That was a mistake");

}

Figure 5.2 shows all the relative and absolute paths that we use in listing 5.15.

Figure 5.2 Relative and absolute paths used in listing 5.15

pub mod treats {
pub mod shop {

use crate::treats::Treat;

fn buy() -> Treat {
Treat::IceCream

}
}

pub enum Treat {
Candy,
IceCream,

}

pub struct ConsumedTreat
treat: Treat,

}

fn eat(treat: Treat)
-> ConsumedTreat {
ConsumedTreat { treat }

}
}

use crate::treats::ConsumedTreat;

fn regret(treat: ConsumedTreat) {
println!("That was a mistake");

}

Legend

Relative path

Absolute path
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Notice that the arrows for the absolute paths go all the way to the top of the crate. This

is intentional; it serves to remind us that absolute paths are always based at the root of

the crate, and they take us from wherever we are in the crate back up to the root.

 If we write use statements that rely on absolute paths, the rest of our code can rely

on relative paths that do not need to worry about module hierarchies at all. This cen-

tralizes concerns about module hierarchies in our use statements, making the rest of

our code easier to move around and easier to read.

 Now let’s jump back to our greeter program and get it to compile. Recall that we

wrote the code in the following four listings, which did not compile.

use input::get_name;
use output::{goodbye, hello};

mod day_kind;
mod input;
mod output;

fn main() {
let name = get_name();

hello(&name);
goodbye(&name);

}

pub enum DayKind {
Good,
Bad,

}

use std::io::stdin;

pub fn get_name() -> String {
let mut name = String::new();

println!("Please enter your name");
stdin().read_line(&mut name).unwrap();

name
}

use day_kind::DayKind;

pub fn print_day_kind_message(day_kind: DayKind) {
match day_kind {

DayKind::Good => println!("I'm glad to hear you're having a good day!"),

Listing 5.16  main.rs

Listing 5.17  day_kind.rs

Listing 5.18  input.rs

Listing 5.19  output.rs

Responsible for the compiler 
error unresolved import 
'day_kind'
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DayKind::Bad => println!("I'm sorry to hear you're having a bad day"),
}

}

pub fn goodbye(name: &str) {
println!("Goodbye, {}", name);

}

pub fn hello(name: &str) {
println!("Hello, {}", name);

}

Knowing what we know now about paths, we should be able to fix it. The day_kind

name does not exist within the output module, so we cannot use a relative path to get

to it. We can use a special path segment called super that allows us to move up the

module hierarchy, similar to the .. syntax in filesystem paths. However, outside of very

simple cases, the use of super is generally discouraged. If we want to fix this error, we

should use an absolute path. Since the day_kind module is just under the crate root,

the absolute path to it is crate::day_kind. That means we can fix our code by chang-

ing that use statement to 

use crate::day_kind::DayKind

The code should now compile. Now that we have that sorted, we can finish updating

our greeter program by allowing it to ask the user how their day was. Let’s write a new

function in input.rs which does just that.

use crate::day_kind::DayKind;

pub fn how_was_day() -> DayKind {
let mut day = String::new();

println!("How was your day?");
stdin().read_line(&mut day).unwrap();

let day_trimmed = day.trim();

if day_trimmed == "good" {
DayKind::Good

} else {
DayKind::Bad

}
}

Now that we have a way to get a kind-of-day response from the user and a way to print

out a message, let’s combine them in our main function. 

use input::{get_name, how_was_day};
use output::{goodbye, hello, print_day_kind_message};

Listing 5.20 Asking the user about their day

Listing 5.21 Calling kind-of-day functions from main

The read_line function generates a string that 
contains the newline character at the end of it. 
Calling .trim removes leading and trailing 
whitespace, which is necessary to compare 
this string to “good”. If we did not call .trim, 
we would need to write if day == "good\n".
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mod day_kind;
mod input;
mod output;

fn main() {
let name = get_name();

hello(&name);

let day_kind = how_was_day();
print_day_kind_message(day_kind);

goodbye(&name);
}

And now we can try running our program for both good and bad days:

$ cargo run
Please enter your name
Rose

Hello, Rose

How was your day?
good
I'm glad to hear you're having a good day!

Goodbye, Rose

$ cargo run

Please enter your name
Jack
Hello, Jack

How was your day?
bad

I'm sorry to hear you're having a bad day
Goodbye, Jack

So, we can now ask the user for their name and how their day was and respond accord-

ingly. Two small matters remain that we should try to fix:

 The “Hello, {name}” text has a newline after it because we don’t call .trim() on

the name string. We can create a single function for pulling a line of text from

stdin and trimming whitespace.

 It feels redundant to reference crate::day_kind::DayKind everywhere since

the type name is the same as the module name. We can create an alias that

makes it easier to use.

Let’s start with the first problem. Given what we have seen from the other functions

that read from stdin in the input module, we might come up with something that

looks like this:

fn read_line() -> String {
let mut line = String::new();

We do not need to import the DayKind type to 
store a DayKind in a variable. Rust only 
requires importing structs and enums when 
they are used by name. If we wanted an 
explicit type annotation like let day_kind: 
DayKind, we would need to import it.
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stdin().read_line(&mut line).unwrap();

line.trim()
}

But this code does not compile, and the Rust compiler is quick to tell us why:

$ cargo build
error[E0308]: mismatched types
--> src/input.rs:9:3
|

4 | fn read_line() -> String {
| ------ expected `String` because of return type

...
9 | line.trim()

| ^^^^^^^^^^^
| |
| expected struct `String`, found `&str`
| help: try using a conversion method: `line.trim().to_string()`

String::trim does not return another String with its own memory space; instead, it

returns an &str string slice that references the same underlying memory as the origi-

nal String. In most cases, this is a good thing because it means you do not need to

reallocate strings when you only want to pull out whitespace. For our purposes, we

need to reallocate. We can do this by following the compiler’s instruction and adding

.to_string() at the end of our line to reallocate the &str into a String.

 Now, we need to rewrite our get_name and how_was_day functions to use the new

helper function we created. 

use crate::day_kind::DayKind;
use std::io::stdin;

fn read_line() -> String {
let mut line = String::new();

stdin().read_line(&mut line).unwrap();

line.trim().to_string()
}

pub fn get_name() -> String {
println!("Please enter your name");
read_line()

}

pub fn how_was_day() -> DayKind {
println!("How was your day?");
let day = read_line();

if day == "good" {
DayKind::Good

} else {

Listing 5.22 Greeter input module with read_line helper added

This function is not marked pub. It is not 
useful outside the context of the input 
module, so we do not need to export it 
to the other modules of our crate.
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DayKind::Bad
}

}

Our code now runs without any gaps in the output after names:

$ cargo run
Please enter your name
Lonnie
Hello, Lonnie
How was your day?
good
I'm glad to hear you're having a good day!
Goodbye, Lonnie

Now that we have removed the gaps and centralized our stdin access, let’s create an

alias for DayKind to simplify importing it. 

5.2.2 Path aliases

To create an alias for DayKind, we will combine two keywords that we have used many

times before—pub use. When you combine these two things, they are called a re-export

and act as an alias for the thing that is imported. Let’s see how this works in practice;

add the following line to the top of our main.rs file:

pub use crate::day_kind::DayKind;

This code both imports DayKind from the day_kind module and creates a new public-

facing DayKind name, which is located at the crate root. We can then use it from our

input and output modules:

use crate::DayKind;

use crate::day_kind::DayKind;

Both use statements refer to the exact same item, but one is shorter and relies on the

pub use statement that we added to main.rs earlier. 

 The full contents of our greeter crate are shown in the following four listings.

use input::{get_name, how_was_day};
use output::{goodbye, hello, print_day_kind_message};

pub use day_kind::DayKind;

mod day_kind;
mod input;
mod output;

fn main() {
let name = get_name();

Listing 5.23 Completed greeter application: main.rs

New way of writing 
the import statement

Old way of writing 
the import statement
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hello(&name);

let day_kind = how_was_day();
print_day_kind_message(day_kind);

goodbye(&name);
}

use crate::DayKind;
use std::io::stdin;

fn read_line() -> String {
let mut line = String::new();

stdin().read_line(&mut line).unwrap();

line.trim().to_string()
}

pub fn get_name() -> String {
println!("Please enter your name");
read_line()

}

pub fn how_was_day() -> DayKind {
println!("How was your day?");
let day = read_line();

if day == "good" {
DayKind::Good

} else {
DayKind::Bad

}
}

use crate::DayKind;

pub fn print_day_kind_message(day_kind: DayKind) {
match day_kind {

DayKind::Good => println!("I'm glad to hear you're having a good day!"),
DayKind::Bad => println!("I'm sorry to hear you're having a bad day"),

}
}

pub fn goodbye(name: &str) {
println!("Goodbye, {}", name);

}

pub fn hello(name: &str) {
println!("Hello, {}", name);

}

Listing 5.24 Completed greeter application: input.rs

Listing 5.25 Completed greeter application: output.rs
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pub enum DayKind {
Good,
Bad,

}

pub use statements are often added to Rust code to hide the module hierarchy from

the public API. This allows deeply nested and specific modules to be created within a

crate without requiring end users to care about them. Imagine you are using a crate

called forest that has the following lib.rs:

pub mod the {
pub mod secret {

pub mod entrance {
pub mod to {

pub mod the {
pub mod forest {

pub fn enter() { }
}

}
}

}
}

}

pub use the::secret::entrance::to::the::forest::enter;

You could construct the very large path to the enter function yourself, or you could

call forest::enter. Which one would you rather do? As a library maintainer, do you

want to commit to maintaining that very long path as a part of your public API? If you

change any part of that path, people using the long version of the path will have com-

piler errors. 

 A few more items are left to discuss with respect to paths and modules. Let’s con-

sider a significantly simpler version of our forest crate. This crate contains many

modules representing various areas in a forest, each containing an enter function

used to walk into this area of the forest. All of these enter functions use the shared

forest::enter_area function for their implementation. 

pub mod forest {
pub fn enter_area(area: &str) {

match area {
"tree cover" => println!("It's getting darker..."),
"witches coven" => println!("It's getting spookier..."),
"walking path" => println!("It's getting easier to walk..."),
x => panic!("Unexpected area: {}", x),

}
}

}

Listing 5.26 Completed greeter application: day_kind.rs

Listing 5.27 forest crate
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pub mod tree_cover {
pub fn enter() {

crate::forest::enter_area("tree cover");
}

}

pub mod walking_path {
pub fn enter() {

crate::forest::enter_area("walking path");
}

}

pub mod witches_coven {
pub fn enter() {

crate::forest::enter_area("witches coven");
}

}

Users of the forest crate should call tree_cover::enter, walking_path::enter, and

witches_coven::enter. They should not call the generic forest::enter_area func-

tion, as it is only intended to work with the strings that come from other functions in

this crate. The current forest crate does not protect users from misusing this API.

The forest and its enter_area function are both exposed publicly and can be used

directly by crate users. We should not expose these items publicly; we should hide

them. Let’s remove the pub keyword from the forest module and the enter_area

function. 

mod forest {
fn enter_area(area: &str) {

match area {
"tree cover" => println!("It's getting darker..."),
"witches coven" => println!("It's getting spookier..."),
"walking path" => println!("It's getting easier to walk..."),
x => panic!("Unexpected area: {}", x),

}
}

}

...

If we try to compile this code now, we run into a bit of a snag:

$ cargo build
error[E0603]: function `enter_area` is private

--> src/lib.rs:14:20
|

14 | crate::forest::enter_area("tree cover");
| ^^^^^^^^^^ private function
|

note: the function `enter_area` is defined here

Listing 5.28 forest module with pub removed
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--> src/lib.rs:2:3
|

2 | fn enter_area(area: &str) {
| ^^^^^^^^^^^^^^^^^^^^^^^^^

... (same error on lines 20 and 26)

The compiler is complaining because we made the enter_area function private,

which is not a crate-level distinction but a module-level distinction. We could only call

enter_area from another function inside of the forest module now. We don’t want

to add pub to enter_area since we don’t want it to be available outside of the crate,

but we also don’t want it to be hidden from other modules within the crate. We can ful-

fill both requirements here by using a different kind of visibility modifier—

pub(crate). 

 As the syntax implies, pub(crate) means that the item is visible to all other mod-

ules within the crate but is not visible from any other crate. This is useful when writing

utility functions that are used throughout a crate, which you do not want to expose

publicly. It exactly describes the enter_area function in our forest module. Let’s add

that annotation now. 

mod forest {
pub(crate) fn enter_area(area: &str) {

match area {
"tree cover" => println!("It's getting darker..."),
"witches coven" => println!("It's getting spookier..."),
"walking path" => println!("It's getting easier to walk..."),
x => panic!("Unexpected area: {}", x),

}
}

}

...

The crate now compiles with no problem:

$ cargo build
Compiling forest
Finished dev [unoptimized + debuginfo] target(s) in 0.13s

But hold on a moment: Why does this compile? The forest module is not marked as

pub(crate). Why can we use it from other modules? To answer this question, we need

to look at the upward visibility rules for modules. 

5.3 Upward visibility

Code within a module inherits the visibility rules from the module above itself. This

concept can be a little tricky to understand, so let’s look at a short example. 

Listing 5.29 A module with the function visible within the crate
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fn function() {}

mod nested {
fn function() {

crate::function();
}

mod very_nested {
fn function() {

crate::function();
crate::nested::function();

}

mod very_very_nested {
fn function() {

crate::function();
crate::nested::function();
crate::nested::very_nested::function();

}
}

}
}

Notice that no functions or modules are marked pub. Everything is private, but it

works because the function only attempts to call functions that are higher in the mod-

ule tree than themselves. We can make the code fail to compile by changing the code

to call down the module tree.

fn function() {
nested::function();

}

mod nested {
fn function() {

very_nested::function();
}

mod very_nested {
fn function() {

very_very_nested::function();
}

mod very_very_nested {
fn function() {}

}
}

}

Now, every line that attempts to call down results in a compile error:

$ cargo build
error[E0603]: function `function` is private

Listing 5.30 Upward visibility without pub

Listing 5.31 Downward visibility without pub (doesn’t work)
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--> src/lib.rs:2:11
|

2 | nested::function();
| ^^^^^^^^ private function
|

error[E0603]: function `function` is private
--> src/lib.rs:7:18
|

7 | very_nested::function();
| ^^^^^^^^ private function
|

error[E0603]: function `function` is private
--> src/lib.rs:12:25
|

12 | very_very_nested::function();
| ^^^^^^^^ private function
|

Figure 5.3 shows the functions at each point in the module tree that are legal to call.

Figure 5.3 Visualization of the parent visibility rule: modules can use private items from parent modules.
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mod very_very_nested

This arrow represents that this visualization
shows the functions that can be called from
crate::nested::function. From here,
we can only call crate::function.

Because all functions and modules are
private, we cannot call any other functions
from the function at the crate root.
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So, because of Rust’s implicit visibility rules for members of a parent module, the code

in listing 5.29 works. Here is the final code for our forest crate. 

mod forest {
pub(crate) fn enter_area(area: &str) {

match area {
"tree cover" => println!("It's getting darker..."),
"witches coven" => println!("It's getting spookier..."),
"walking path" => println!("It's getting easier to walk..."),
x => panic!("Unexpected area: {}", x),

}
}

}

pub mod tree_cover {
pub fn enter() {

crate::forest::enter_area("tree cover");
}

}

pub mod walking_path {
pub fn enter() {

crate::forest::enter_area("walking path");
}

}

pub mod witches_coven {
pub fn enter() {

crate::forest::enter_area("witches coven");
}

}

Now we have a much more thorough understanding of the Rust module system,

which will come in very handy as we create larger programs and libraries. Being able

to easily subdivide code and hide code that should not be a part of a public interface

is crucial for creating software that is easy to understand and maintain. In the next

chapter, we look at how we can speed up Python code using Rust and the pyO3 crate. 

Summary

 Using the mod keyword allows us to separate code into logical modules with spe-

cific purposes.

 Writing mod your_mod_name { contents; } allows you to keep modules within

one file.

 Writing mod your_mod_name; allows you to write the contents of the module in

your_mod_name.rs.

 You must use the pub keyword to make items public if you intend to use them

between modules.

 Modules can be nested as deeply as you want.

Listing 5.32 Final code for the forest crate
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 Relative and absolute paths are used to access items within modules.

 Relative paths are evaluated relative to the current module.

 Absolute paths begin with the name of a crate.

 The crate keyword refers to the root of the current crate.

 pub use allows you to alias items.

 Modules inherit visibility from their parents.

 pub(crate) is used to mark items as public within a crate but private to other

crates.
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Integrating with
dynamic languages

So far, we have devoted a lot of time to Rust fundamentals and C FFI. This chapter

will more directly cover how we can integrate Rust code into dynamic program-

ming languages and reap huge performance benefits from it.

6.1 Data processing in Python

Let’s imagine we are working on a Python program that aggregates some newline-

separated JSON data. Here is our input data file; let’s call it data.jsonl:

{ "name": "Stokes Baker", "value": 954832 }
{ "name": "Joseph Solomon", "value": 279836 }
{ "name": "Gonzalez Koch", "value": 140431 }
{ "name": "Parrish Waters", "value": 490411 }
{ "name": "Sharlene Nunez", "value": 889667 }

This chapter covers

 Writing Rust code that can be easily called from 

Python

 Calling Python code from Rust

 Benchmarking Rust code with Criterion
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{ "name": "Meadows David", "value": 892040 }
{ "name": "Whitley Mendoza", "value": 965462 }
{ "name": "Santiago Hood", "value": 280041 }
{ "name": "Carver Caldwell", "value": 632926 }
{ "name": "Tara Patterson", "value": 678175 }

Our program calculates the total sum of each of the "value" entries and the sum of

the length of all of the "name" strings. This process is relatively straightforward in nor-

mal Python code. Let’s save this in a file called main.py.

import sys
import json

s = 0

for line in sys.stdin:
value = json.loads(line)
s += value['value']
s += len(value['name'])

print(s)

Let’s run it to see what we get:

$ python main.py < data.jsonl
6203958

The code works, but we have heard some complaints that this aggregation code does

not sufficiently meet the needs of users. People have very high expectations for the

performance of this feature. Consequently, you decide to try moving the JSON parsing

piece of functionality into Rust while keeping the I/O in Python, since it is part of a

larger Python application. Let’s look at the plan for how we can accomplish this move. 

6.2 Planning the move

As we rewrite this JSON aggregation functionality, we’re going to do a few things:

 Implement a pure-Rust version of the aggregation functionality.

 Use PyO3 to wrap the Rust code in a format that can be called from Python.

 Create a benchmarking harness to compare the original pure Python versus

pure Rust versus Rust in Python.

Let’s start by writing the functionality in Rust. First, we should identify which piece of

the code we want to rewrite. We want to keep the I/O piece of the code in Python,

since we are assuming that this JSON aggregation code is part of a larger Python pro-

gram, such as an HTTP server. The Python code is also responsible for summing the

Listing 6.1 Python program to aggregate JSON lines
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total of each call to our Rust code. The Python code looks something like the follow-

ing listing.

import sys

import rust_json

s = 0

for line in sys.stdin:

s += rust_json.sum(line)

print(s)

Our Rust function needs to do the things we removed from the Python code:

1 Take in a string as input.

2 Parse this string as a JSON object containing a "name" string property and a

"value" numeric property.

3 Return the sum of the "value" property and the length of the "name" property.

We can sketch this code in Rust pseudocode.

pub fn sum(line: &str) -> i32 {
let data = parse_as_json(line);

data.value + data.name.len()
}

We’re almost there with our Rust code, but we do need to take a small detour to look

into how to parse JSON in Rust. 

6.3 JSON Parsing

Many data formats in Rust can be easily parsed into Rust data structures using Serde.

Serde is “a framework for serializing and deserializing Rust data structures efficiently

and generically (https://serde.rs).” The name Serde comes from the first parts of the

words serialize and deserialize. Serde acts as a generic framework that doesn’t care about

any one data format in particular, and other crates like serde_json act as a bridge

between the generic Serde data model and the JSON data format. The Serde ecosys-

tem has a huge number of crates for all manner of different formats. The official web-

site lists over 20 different data formats that Rust data types can serialize into and/or

deserialize from using Serde. Figure 6.1 shows how the various pieces of the ecosystem

fit together.

Listing 6.2 The Python code

Listing 6.3 Rust pseudocode for JSON summing

We don’t know how to write this JSON 
parsing code in Rust yet, but we 
explore it in the next section.

https://serde.rs
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Figure 6.1 The Serde ecosystem

At the core of Serde are two traits. The Serialize trait is used for taking a Rust data-

type and rendering it into some data format. Conversely, the Deserialize trait is used

for parsing a data format into a Rust data type. We can write the code to implement

these traits manually, but we can also use the Rust compiler to do the work for us. Let’s

take a look at how we can do that. Recall that we need to parse JSON objects that look

like this:

{ "name": "Rachelle Ferguson", "value": 948129 }

A name field contains a string, and a value field contains a number. If we wanted to

create a Rust struct to store this data, it might look like

struct Data {
name: String,
value: i32,

}

Let’s build up the parsing code for this struct. Create a new Rust project called

rust_json:

$ cargo new rust_json

JSON

{
"hello": "world",
"size": 10,
"data": [3, 4],
"valid": true

}

TOML

hello = "world"
size = 10
data = [3, 4]
valid = true

URL

hello=world&size=10&
data[0]=3&data[1]=4&
valid=true

Serde data model

serde_json toml serde_qs

#[derive(Deserialize)
struct Data {

hello: String,
size: usize,
data: Vec<i32>,
valid: bool,

}
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Before we get to the code, we need to add a few dependencies to the Cargo.toml file.

We also need to use some new TOML syntax that we have not seen before. Add the

following lines to the [dependencies] section of the Cargo.toml file:

[dependencies]
serde_json = "1.0"
serde = { version = "1.0", features = ["derive"] }

The serde_json line looks familiar enough, but the dependency line for serde is a bit

odd. Similar to JSON, TOML can contain objects with arbitrary keys and values. Cargo

accepts dependencies as either a name mapped to a version string or a name mapped

to a configuration object that has more options on it. For a full reference of the keys

you can specify, visit The Cargo Book’s section on dependencies (https://mng.bz/

N1qX).

 For our purposes, we include a version number for serde and an array of features.

Features are the mechanism Rust uses for conditional compilation. Crates can specify

any number of features that may enable different code paths, include additional depen-

dencies, or enable features in their own dependencies. The specific feature we need to

enable is the derive feature, which contains the code that allows the Rust compiler to

generate the parsing code for us. We are not only saved from a lot of typing, but we also

generate parsing code that is specific to whatever data type we provide it.

 Now that we have our dependencies settled, let’s jump over to the code. Open the

main.rs file, and add the code in the following listing.

struct Data {
name: String,
value: i32,

}

fn main() {
let input = "{ \"name\": \"Sharpe Oliver\", \"value\": 134087 }";

let parsed = serde_json::from_str(input).unwrap();

println!("{:?}", parsed);
}

The program should try to parse the JSON string that we provide and print out the

resulting Rust data type. Let’s try running it:

$ cargo run
error[E0282]: type annotations needed
--> src/main.rs:9:7
|

9 | let parsed = serde_json::from_str(input).unwrap();
| ^^^^^^ consider giving `parsed` a type

Listing 6.4 First pass at JSON parsing code

Even though serde_json depends on serde, 
we can list it first. Cargo does not care 
about the ordering of dependencies.
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We run into an error now because the compiler is not smart enough to infer that we

expect serde_json::from_str to return a Data instance. This function has a generic

return type, similar to the parse function we learned about in chapter 3. Similar to

parse, we need to give the compiler a hint as to what type it should return. Add an

explicit type annotation to the parsed variable:

let parsed: Data = serde_json::from_str(input).unwrap();

Let’s try running the program again:

$ cargo run

error[E0277]: the trait bound `Data: serde::de::Deserialize<'_>` is not

satisfied

--> src/main.rs:9:22

|

9 | let parsed: Data = serde_json::from_str(input).unwrap();

| ^^^^^^^^^^^^^^^^^^^^ the trait

| `serde::de::Deserialize<'_>` is not implemented

| for `Data`

|

::: serde_json-1.0.68/src/de.rs:2587:8

|

2587 | T: de::Deserialize<'a>,

| ------------------- required by this bound in

| `serde_json::from_str`

error[E0277]: `Data` doesn't implement `Debug`

--> src/main.rs:11:20

|

11 | println!("{:?}", parsed);

| ^^^^^^ `Data` cannot be formatted using `{:?}`

|

Now, there are two different error messages. We may recognize the error caused when

Data does not implement the Debug trait. If you want to print out Rust values using the

{:?} formatter, you must be sure to implement Debug. The other error is from ser-

de_json: Data does not implement the Deserialize trait. Similar to Debug, if we want

to deserialize into our struct, we need to implement the Deserialize trait. Thanks to

the derive feature we included in our serde dependency, we can solve both errors

with a single line.

#[derive(Debug, serde::Deserialize)]

struct Data {

name: String,

value: i32,

}

fn main() {

let input = "{ \"name\": \"Sharpe Oliver\", \"value\": 134087 }";

Listing 6.5 Working JSON parsing code

Note the new 
derive line here.
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let parsed: Data = serde_json::from_str(input).unwrap();

println!("{:?}", parsed);
}

Let’s try running the code now:

$ cargo run
Data { name: "Sharpe Oliver", value: 134087 }

It works! For most simple data types, adding #[derive(serde::Deserialize)] is all

that’s required to parse them from any data format that serde supports. Notice that

the struct definition doesn’t have any JSON-specific code on it. If we added the cor-

rect dependencies, we could just as easily parse our Data struct from YAML, TOML,

MessagePack, or even environment variables. It is common for library authors to have

simple data types like this implement Deserialize and/or Serialize, and then the

library consumers can serialize and/or deserialize those types into whatever formats

they want.

 Serde has many more complex configuration options for renaming fields, provid-

ing defaults, or even nesting behavior. They are all well documented at https://

serde.rs, but we do not discuss them.

 Serde also provides type checking for us. Let’s try changing the name field to an

i32.

#[derive(Debug, serde::Deserialize)]
struct Data {

name: i32,
value: i32,

}

fn main() {
let input = "{ \"name\": \"Sharpe Oliver\", \"value\": 134087 }";

let parsed: Data = serde_json::from_str(input).unwrap();

println!("{:?}", parsed);
}

Now let’s run the code to see what happens:

$ cargo run
thread 'main' panicked at called `Result::unwrap()` on an `Err` value:
Error("invalid type: string \"Sharpe Oliver\", expected i32", line: 1,

column: 19)

Since we use unwrap on the Result returned from serde_json::from_str, the pro-

gram panics when the function returns an error. But we can see that this error

includes line and column information, as well as the exact type error that occurred.

Listing 6.6 JSON parsing code with a run-time type error

The expected type 
of name is now i32.

We provide a string
value for name.

https://serde.rs
https://serde.rs
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These details represent work that we’re not doing in generating error messages and

validation ourselves; they come essentially for free when we use serde.

 Now that we understand how to parse simple JSON structures in Rust, let’s recreate

the rest of the Python functionality. Recall that we need to sum the value property

and the length of the name property. Let’s create a function that parses the JSON and

returns the math expression.

#[derive(Debug, serde::Deserialize)]
struct Data {

name: String,
value: i32,

}

fn main() {
let result =

sum("{ \"name\": \"Rachelle Ferguson\", \"value\": 948129 }");

println!("{}", result);
}

fn sum(input: &str) -> i32 {
let parsed: Data = serde_json::from_str(input).unwrap();

parsed.name.len() as i32 + parsed.value
}

We can run this code now and check its return value:

$ cargo run
948146

Let’s run this JSON string through the Python version to validate the results:

$ echo '{ "name": "Rachelle Ferguson", "value": 948129 }' | python main.py
948146

The results match! Now that we have Rust code that performs the same functionality

as a small piece of the Python code, we need to write some glue code that allows our

Rust function to be called from Python.

6.4 Writing a Python extension module in Rust

We will be creating a Python extension module. Similar to Rust, Python uses modules as

the organizational unit for functions, classes, and other top-level items. An extension

module is a module that is compiled against the Python C/C++ libraries as opposed to

being written in Python. As a result, they are significantly faster than normal Python

modules but have public APIs that work the same as normal Python modules. We can

use Rust to define Python classes, functions, global variables, and other items. For our

purposes here, though, we only look at functions. Let’s begin.

Listing 6.7 Rust program mimicking the functionality of Python

String::len() returns a 
usize, which must be 
cast to an i32 manually.
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 First, we need to update our Cargo.toml file to include a new dependency. We will

use the pyO3 crate. PyO3 provides high-level Rust bindings to the Python interpreter.

These bindings can be used both to create extension modules and to run arbitrary

Python code from within Rust. We explore both in this chapter, but first, we will look

at writing an extension module. Open Cargo.toml and update it to look like this:

[package]
name = "rust_json"
version = "0.1.0"
edition = "2018"

[lib]
crate-type = ["cdylib"]

[dependencies]
serde_json = "1.0"
serde = { version = "1.0", features = ["derive"] }
pyo3 = { version = "0.14", features = ["extension-module"] }

Because PyO3 has a lot of different functionality, it does not include the extension

module API by default. We must enable it by including it in the list of features that

we’re using.

 Next, we need to turn our executable crate into a library crate. An executable crate

contains a main.rs and can be compiled into a self-contained executable. A library

crate, by comparison, contains a lib.rs and cannot be executed by itself; it must be

included in some other executable. Recall that we made this distinction previously by

passing --lib to the cargo new command. In this case, the only thing that cargo new

does differently is to create a lib.rs instead of a main.rs. Therefore, the migration

for us is quite simple. We must rename the main.rs file to lib.rs and delete the main

function:

#[derive(Debug, serde::Deserialize)]
struct Data {

name: String,
value: i32,

}

fn sum(input: &str) -> i32 {
let parsed: Data = serde_json::from_str(input).unwrap();

parsed.name.len() as i32 + parsed.value
}

Now that that’s sorted, let’s write our Python glue code! Our first goal should be to

create a module that can successfully be imported by Python. Then we can add the

sum function to that module. Let’s create our skeleton module by updating our

lib.rs now.

Listing 6.8 rust_json as a library (lib.rs)

The new [lib] section that we 
added when creating Rust 
libraries to be called from C

The new pyo3 dependency
and the extension-module
feature that we’ve enabled
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use pyo3::prelude::*;

#[derive(Debug, serde::Deserialize)]
struct Data {

name: String,
value: i32,

}

fn sum(input: &str) -> i32 {
let parsed: Data = serde_json::from_str(input).unwrap();

parsed.name.len() as i32 + parsed.value
}

#[pymodule]
fn rust_json(_py: Python, m: &PyModule) -> PyResult<()> {

Ok(())
}

There are a few new interesting things going on here. Let’s start with the use state-

ment on the first line. Notice that it ends with *, which is called a wildcard and indi-

cates that we will be importing all names from the prelude module. A prelude is a

special module that (by convention) includes many types that are required for users

of a particular crate. It is common for crates to create prelude modules that re-export

commonly used types so that users do not need to name them all individually. It is

important when designing one of these preludes to ensure that your re-exports will

not conflict with other global names. For instance, notice that the items we import

from PyO3 all begin with the py prefix.

 Next, let’s look at the declaration of the rust_json function. First, it has a

#[pymodule] attribute on it. Similar to #[no_mangle], this attribute performs a special

function at compile time. Unlike #[no_mangle], this attribute does not turn off Rust’s

name mangling but instead runs code at compile time to generate a Python extension

module named rust_json. It is important that our function is named rust_json (the

same as the name of our crate), or we will run into problems with name resolution

when we try to import our module in Python.

 rust_json also includes two unused parameters, a Python and an &PyModule. Both

are required even though they are both unused. If we try to remove either, the

#[pymodule] attribute will reject our function. Python is a marker type that indicates

that the Python Global Interpreter Lock (GIL) is held, and PyModule represents our

newly created Python module. We will add our sum function to the PyModule later. The

function returns a PyResult, which is a wrapper type around a Rust Result where the

error variant is a Python-compatible PyError.

 Now that we understand the structure of our empty module, let’s try to import it

from Python:

$ python
>>> import rust_json
Traceback (most recent call last):

Listing 6.9 Empty extension module
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File "<stdin>", line 1, in <module>
ModuleNotFoundError: No module named 'rust_json'

It’s never that easy, is it? Before we can import rust_json in Python, we need to com-

pile our extension module in a fashion that Python understands. The PyO3 develop-

ers created a tool, maturin, to make this process easier. It can set up development

environments for Rust-based Python extensions or build distribution-ready packages.

We can install it with pip, the Python package manager:

$ pip install maturin

maturin has a develop subcommand that will compile our Rust code and install the

resulting Python module for immediate use. It has one caveat: we must run it from

within a Python virtual environment. We will not linger on virtual environments but

know that they are used for dependency isolation in Python projects to prevent users

from accidentally overwriting a globally installed (possibly stable) version of their

package while it’s still being developed. Let’s now create and activate a virtual environ-

ment for our development purposes:

$ virtualenv rust-json
$ source rust-json/bin/activate
(rust-json) $

The exact name we give this virtual environment is not important, but notice that the

(rust-json) name now appears before the shell prompt. In future listings, this prefix

indicates that the command must be run from within this virtual environment. If you

open a new shell or leave this environment, you can reenter it by running source

rust-json/bin/activate again. To leave, you can run deactivate.

 Now that we have a virtual environment set up, we should be able to build, install,

and import our module! Let’s give it a try:

(rust-json) $ maturin develop
Found pyo3 bindings
Found CPython 3.8 at python
... lots of cargo output

Finished dev [unoptimized + debuginfo] target(s) in 7.49s

(rust-json) $ python
>>> import rust_json
>>> print(rust_json)
<module 'rust_json' from 'rust_json/__init__.py'>

We did it! We can import a Python module written in Rust, and it doesn’t spit out an

error! Now that we have an empty module, let’s add our sum function to it. We can

accomplish this with some minor edits to our lib.rs.

use pyo3::prelude::*;

#[derive(Debug, serde::Deserialize)]
struct Data {

Listing 6.10 rust_json extension module that works
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name: String,
value: i32,

}

#[pyfunction]
fn sum(input: &str) -> i32 {

let parsed: Data = serde_json::from_str(input).unwrap();

parsed.name.len() as i32 + parsed.value
}

#[pymodule]
fn rust_json(_py: Python, m: &PyModule) -> PyResult<()> {

m.add_function(wrap_pyfunction!(sum, m)?)?;

Ok(())
}

We added two new things: the pyfunction attribute macro on the sum function, and

the add_function method is now being called on our PyModule. Just like #[pymodule]

is used to declare a Python module, #[pyfunction] is required to wrap a Rust func-

tion in a format that Python understands.

 The add_function line has a few interesting things on it; the slightly odd wrap_

pyfunction macro is required to wrap our sum function in an additional layer of

Python-compatible goodness. Now that we have added the sum function to our mod-

ule, let’s try to call it from Python:

(rust-json) $ maturin develop
(rust-json) $ python
>>> import rust_json
>>> rust_json.sum('{ "name": "Rachelle Ferguson", "value": 948129 }')
948146

We’ve done it! We reimplemented a small piece of the code in Rust and called it from

Python. Let’s try to integrate it into our original Python program.

import sys
import json
import rust_json

s = 0

for line in sys.stdin:
s += rust_json.sum(line)

print(s)

And let’s try to run it, recalling that the original all-Python code output 6203958:

(rust-json) $ python main.py < data.jsonl
6203958

Listing 6.11 Python program using our rust_json module

This pyfunction 
attribute is added.

This add_function 
call is added.
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We get the same result! So, we have successfully duplicated the original functionality

from our Python code in Rust. We believe that it’s faster, but we currently don’t have a

great way to validate that. To really know the effects of what we’ve done, we need to do

some benchmarking.

6.5 Benchmarking in Rust

Benchmarking is a topic fraught with opportunities for misunderstanding and confu-

sion. If not constructed properly, benchmarks can provide misleading results that give

one experimental path an unfair advantage over another. Benchmarks are often con-

ducted under best-case scenarios to test the theoretical performance limits of a sys-

tem, with real-world results never approaching those seen during testing. 

 To try to minimize this risk, we will use

a benchmarking harness called Criterion,

which was designed from the ground up

to be easy to use and provide users with

reliable and correct results. Criterion is a

Rust crate that allows us to benchmark

our code. We can use Criterion to bench-

mark both the Rust code and the Python

code using the py03 library to run Python

from within our Rust code. This process is

a little bit more complicated. Figure 6.2

shows how it all fits together. 

 We begin by creating a new crate that

will hold the benchmarking code. It

needs to be a separate crate due to link-

ing restrictions that come along with our

main crate being a py03 extension mod-

ule. If it were a normal Rust crate, we

would be able to keep the benchmark

code in the main crate. Let’s create this

crate as a sibling directory of the rust_

json crate:

$ cargo new --lib rust_json
$ ls
main.py
json-sum-benchmark
rust_json

This new crate has dependencies on Criterion and PyO3. PyO3 needs to have a differ-

ent feature enabled rather than extension-module this time. We must add the

auto-initialize feature, which makes it easier to run Python code from within Rust. 

 Normally, we add dependencies to the dependencies section, but we are going to

put them somewhere else in this case. dev-dependencies is the section of a

Rust benchmark program

Criterion library

PyO3 library

Benchmark test

Python interpreter

Python code

rust_json module

pyO3 extension module

Benchmark setup

fn sum

Figure 6.2 Anatomy of our benchmark program
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Cargo.toml file for dependencies that are only required when running examples,

tests, and benchmarks. When adding crates that are only useful at test time, such as

Criterion, they should be included in this section so that they are not compiled or

linked with any final library or executable produced by our crate. 

 We also need to tell Cargo about the new benchmark file that we’re going to cre-

ate. Let’s name our new file py-vs-rust.rs. Cargo needs to know the name of the

benchmark file, and we need to disable the default benchmarking harness. Rust has a

benchmark harness built in, but it is unstable and cannot be used with a standard

compiler. Criterion is a more full-featured crate, so we are not losing anything by

skipping it.

 Let’s add these crates to the dev-dependencies section and our new benchmark

now.

[package]

name = "json-sum-benchmark"

version = "0.1.0"

edition = "2018"

[[bench]]

name = "py-vs-rust"

harness = false

[dependencies]

[dev-dependencies]

criterion = "0.3.5"

pyo3 = { version = "0.14", features = ["auto-initialize"] }

Now that we have our dependencies sorted, we can create the benchmark harness file.

We’re going to start out by benchmarking something far simpler than Python code:

the performance of addition operations using u8 values and u128 values. Open

benches/py-vs-rust.rs and add the code in the following listing. 

use criterion::{black_box, criterion_group, criterion_main, Criterion};

criterion_main!(python_vs_rust);

criterion_group!(python_vs_rust, bench_fn);

fn bench_fn(c: &mut Criterion) {

c.bench_function("u8", |b| {

b.iter(|| {

black_box(3u8 + 4);

});

});

Listing 6.12 Cargo.toml with criterion and pyo3

Listing 6.13 Basic benchmark example in benches/py-vs-rust.rs

The two sets of square brackets are 
required; they are TOML syntax indicating 
the potential for multiple bench items.

Only the basename of the file, 
without the .rs extensionTells Cargo to ignore the 

built-in benchmarking 
harness, which we 
replace with Criterion
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c.bench_function("u128", |b| {
b.iter(|| {

black_box(3u128 + 4);
});

});
}

This Criterion benchmark program is about the simplest we can write. There are a lot

of pieces here, but they all build on things that we’ve seen before. Let’s take a look at

them individually.

 The first use line brings in some items from the Criterion crate but use as a state-

ment is not new to us, so we won’t linger here. Next up is the criterion_main macro.

Because we disabled the built-in benchmarking harness, we need to provide our own.

We have to provide a main function to be called when our program starts up. Criterion

provides the criterion_main macro to construct this main function, and it takes

as input a number of Criterion groups to run. These groups are created via the

criterion_group macro, and each one contains a number of functions to run. These

groups are collections of benchmarking functions that run with the same configura-

tion. In this case, it is the default configuration, as we don’t specify any overrides. 

 After the macro calls, we have our bench_fn:

fn bench_fn(c: &mut Criterion) {
...

}

The name of this function is not important, but it is important that it matches the

name provided to the criterion_group macro call. This function must take as input

an &mut Criterion, which is the benchmarking manager struct. We call .bench_

function, which takes a benchmark name (in this case, u8) and a closure:

c.bench_function("u8", |b| {
b.iter(|| {

black_box(3u8 + 4);
});

});

This closure takes an &mut Bencher as an argument, and we can call .iter on this

bencher. The actual running, looping, and measurement takes place here. Everything

inside the closure of .iter will be run many times and measured for performance.

Within this closure, we compute the result of the math expression 3 + 4, and we pass

it to the black_box function, which is provided by Criterion to ensure that the compiler

does not optimize away a computation that it detects as unused. We have another call

to .bench_function and .iter for the u128 example, and it works in the same way:

c.bench_function("u128", |b| {
b.iter(|| {

black_box(3u128 + 4);
});

});
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NOTE It is important to pass the final results of benchmark tests to black_
box to ensure that the compiler does not optimize away your entire test!

Figure 6.3 shows a visual idea of what’s happening in the benchmark file.

Figure 6.3 Anatomy of a benchmark file

Now that we understand a bit about what’s happening in the benchmark file, let’s run

our benchmark test and see what results it spits out. We can run it with cargo bench.

You should get output that looks roughly like this:

$ cd json-sum-benchmark
$ cargo bench

Compiling json-sum-benchmark v0.1.0
Finished bench [optimized] target(s) in 2.09s
Running unittests

running 1 test
test tests::it_works ... ignored

test result: ok. 0 passed; 0 failed; 1 ignored; 0 measured; 0 filtered out;

Running unittests
Benchmarking u8: Warming up for 3.0000 s
Benchmarking u8: Collecting 100 samples in estimated 5.0000 s (20B iters)
u8 time: [257.13 ps 261.71 ps 266.79 ps]

use criterion::{
black_box,
criterion_group,
criterion_main,
Criterion,

};

criterion_main!(python_vs_rust);

criterion_group!(python_vs_rust, bench_fn);

fn bench_fn(c: &mut Criterion) {
c.bench_function("u8", |b| {

b.iter(|| {
black_box(3u8 + 4);

});
});

}

Imports library functions
from Criterion

Creates main function
that runs the given group

Creates group with the given
name that runs the given
function

Must match

Must match

Setup and iteration for 
single benchmark

Repeatedly runs this
code and measures
timing

Ensures the compiler does
not optimize away this code
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Benchmarking u128: Warming up for 3.0000 s
Benchmarking u128: Collecting 100 samples in estimated 5.0000 s (10B iters)
u128 time: [502.27 ps 510.24 ps 521.03 ps]

After compilation finishes, we first get a run through all the unit tests and an ignored

line for each. The it_works unit test is written by Cargo when we run cargo new --

lib by default. Benchmark tests are considered a subset of tests, and the built-in unit

testing harness allow users to write benchmark tests alongside unit tests, which is why

they show up in this output. 

 Next, the output from Criterion runs the benchmark as many times as possible in 3

seconds to warm the CPU and memory caches and get a clean measurement. It then

attempts to run the benchmark as many times as possible within 5 seconds and mea-

sures the execution time of these iterations. It estimates that it will be able to perform

20 billion iterations for the u8 version and 10 billion iterations for the u128 version. 

 Finally, for each test, we get a line showing the estimated run time of a single iteration

of the benchmark within a confidence interval. This confidence interval is configurable,

but it defaults to 95%. The first and last numbers are the lower and upper bounds of the

interval, and the middle number is Criterion’s best guess for the time taken on each

interval. It’s a great way to reduce the data from 20 billion iterations of a test down to

three numbers. Figure 6.4 shows the data output for each benchmark test.

 In addition to its simplicity, this program is a great example of using Criterion

because it highlights how precise the library is. We captured a factor of two differences

at the 0.1 nanosecond level—a difference of 250 trillionths of a second. Criterion is

very precise and has low overhead. You can time and measure almost anything you

throw at it.

Benchmarking u8: Warming up for 3.0000 s

Benchmarking u8: Collecting 100 samples in
estimated 5.0000 s (20B iters)

u8 time: [257.13 ps 261.71 ps 266.79 ps]

Default warm-up
time is 3 seconds.

Benchmark name
Expected number of iterations
based on number of iterations
in warm-up time

Lower confidence
interval

Upper confidence
interval

Estimated time
for single iteration

Default number of
samples is 100.

Figure 6.4 Anatomy of Criterion’s command-line output
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Now let’s try to apply Criterion to our use case. Remember that we’re trying to bench-

mark Python’s built-in json module against the custom rust_json.sum method that

we wrote in Rust and exposed via a PyO3 extension module. 

 To benchmark our Python code from within Rust, we need to write some code that

uses a different part of the pyO3 API. We already used it to create Rust code that can

be called from Python, but we can also use PyO3 to run Python code from within Rust. 

 Let’s write a function now called bench_py that allows us to do this. The function

needs a few parameters: a Criterion Bencher so that it can run the benchmark test, the

input string to use for parsing, and the Python code that will be run in the test. Here’s

what that function will look like:

use criterion::Bencher;
use pyo3::prelude::*;
use pyo3::types::PyDict;

fn bench_py(b: &mut Bencher, code: &str, input: &str) {
Python::with_gil(|py| {

let locals = PyDict::new(py);

locals.set_item("json", py.import("json").unwrap()).unwrap();
locals

.set_item("rust_json", py.import("rust_json").unwrap())

.unwrap();
locals.set_item("INPUT", input).unwrap();

b.iter(|| black_box(py.run(code, None, Some(&locals)).unwrap()));
});

}

A lot is going on in this function. Let’s break it down. The function begins with a call

to Python::with_gil. The Python interpreter requires that most operations run from

a single thread per process by utilizing the GIL data structure. The core data structures

of Python require that users are holding the GIL and are not thread safe. These require-

ments do not matter too much from normal Python code (beyond the performance

problems they raise), but it is very important when using the Python C API. PyO3

enforces the rule that the GIL is always held when required, and we acquire it using this

with_gil function. It takes as its only parameter a function that itself is passed a handle

to the Python GIL. This handle is required for interfacing with many PyO3 types. 

 After the GIL is acquired, we create a new PyDict to hold the local variables that

will be injected into our code sample. PyDict is the PyO3 equivalent of creating a

Python dict. Notice that this action requires us to use the handle to the GIL that we

previously acquired. 

 The next few lines place items within our newly created locals dict. The first two are

importing libraries—the json library, which is used by the pure-Python benchmark

code, and then the rust_json library for the pyO3 extension module benchmark. The

import method on the GIL handle is used to import a Python library and returns a mod-

ule instance. The set_item function we use on the PyDict is generic and can be passed

any key and value types that can be converted into Python objects. The last set_item
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line is used to pass the input string from the Rust code to the Python code in the form

of a variable called INPUT. 

 The final section of the function is running the actual benchmark. Recall from our

previous example that b.iter takes in a function that is run over and again many

times by Criterion and measured for its performance. Notice that we do not include

the initialization code as a part of this iteration to save benchmark run time and to

eliminate possible sources of noise. Within this function, we again use black_box to

ensure that the compiler does not optimize away any computations. The py.run func-

tion we call here takes in a string containing Python code to run and two

Option<&PyDict> values to hold global variables and local variables. We store our

inputs as local variables. Figure 6.5 shows how all the pieces work together. 

Figure 6.5 bench_fn diagram

fn bench_py(
b: &mut Bencher,
code: &str,
input: &str

) {
Python::with_gil(|py| {

let locals = PyDict::new(py);

locals.set_item(
"json",
py.import("json").unwrap()

).unwrap();
locals.set_item(

"rust_json",
py
.import("rust_json")
.unwrap()

).unwrap();
locals.set_item(

"INPUT",
input

).unwrap();

b.iter(|| {

black_box(
py.run(
code,

None,

Some(&locals)
).unwrap()

)
);

});
}

Acquires the GIL and holds
it while this closure runs

Python code to run

JSON input string

Sets local variables that 
will be available in the
Python code

Imports the Python JSON
module and assigns it to
a variable called json

Imports the rust_json
module and assigns it to
a variable called json

Sets the INPUT variable
to the JSON input string

Runs this code repeatedly
and measures timing Hides this code

to the optimizer

Executes Python code

String containing
code to be run

Global variables

Local variables

Criterion benchmarker

Reference to the GIL
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Let’s use that function to compare the performance of the two versions of the code.

use criterion::{
black_box, criterion_group, criterion_main, Bencher, Criterion,

};
use pyo3::prelude::*;
use pyo3::types::PyDict;

criterion_main!(python_vs_rust);
criterion_group!(python_vs_rust, bench_fn);

fn bench_py(b: &mut Bencher, code: &str, input: &str) {
Python::with_gil(|py| {

let locals = PyDict::new(py);

locals.set_item("json", py.import("json").unwrap()).unwrap();
locals

.set_item("rust_json", py.import("rust_json").unwrap())

.unwrap();
locals.set_item("INPUT", input).unwrap();

b.iter(|| black_box(py.run(code, None, Some(&locals)).unwrap()));
});

}

fn bench_fn(c: &mut Criterion) {
let input = r#"{"name": "lily", "value": 42}"#;

c.bench_function("pure python", |b| {
bench_py(

b,
"

value = json.loads(INPUT)
s = value['value'] + len(value['name'])

",
input,

);
});

c.bench_function("rust extension library", |b| {
bench_py(b, "s = rust_json.sum(INPUT)", input);

});
}

Now, let’s try running our benchmark, ensuring that we’re within the virtual environ-

ment that we created earlier:

(rust-json) $ cd json-sum-benchmark
(rust-json) $ cargo bench
Benchmarking pure python: Collecting 100 samples in estimated

5.1074 s (202k iterations)
pure python time: [25.415 us 25.623 us 25.842 us]

Listing 6.14 Benchmarking pure Python vs. a Rust extension module
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Benchmarking rust extension library: Collecting 100 samples in estimated
5.0931 s (232k iterations)

rust extension library time: [21.746 us 21.987 us 22.314 us]

Wait a minute. The Rust version is barely faster than the pure Python version. We put

in an awful lot of work to get a 10% speed boost beyond base Python. We are forget-

ting one important thing that Rust has that Python does not: an optimizing compiler.

Let’s take a small detour to look at that. 

6.6 Optimized builds

You may recall the following line from the end of all our cargo build commands:

Finished dev [unoptimized + debuginfo] target(s) in 2s

This code line indicates that Cargo is not compiling our code with any optimizations

enabled. Running compile-time optimizations increases compile time, so they are not

enabled by default. If you’re running your code on a development machine for test-

ing purposes, you can generally get away with this, as we have been able to up to this

point. When you want to distribute your code or run it in production somewhere, you

should be using optimized builds. It’s quite straightforward to get Cargo to produce

optimized builds; we simply need to add the --release flag to any cargo build or

cargo run commands that we’re using. 

 In this particular case, we’re building a pyO3 extension module and using the

maturin develop command to do it. This command is a small wrapper around cargo

build and accepts many of the same parameters and flags that Cargo does. It accepts

the --release flag, so let’s recompile our extension module with this flag to produce

an optimized binary:

$ (rust-json) cd rust_json
$ (rust-json) maturin develop --release

Found pyo3 bindings
Found CPython 3.8 at python
Compiling pyo3-build-config v0.14.5
Compiling pyo3-macros-backend v0.14.5
Compiling pyo3 v0.14.5
Compiling pyo3-macros v0.14.5
Compiling rust-json v0.1.0
Finished release [optimized] target(s) in 7.91s

Notice that the last line now indicates that Cargo has produced an [optimized] build

in release mode.

 Now let’s rerun our benchmarks to see how that affects the performance:

$ (rust-json) cd json-sum-benchmark
$ (rust-json) cargo bench

Compiling pyo3-build-config v0.14.5
Compiling pyo3-macros-backend v0.14.5
Compiling pyo3 v0.14.5
Compiling pyo3-macros v0.14.5
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Compiling json-sum-benchmark v0.1.0

Finished bench [optimized] target(s) in 9.21s

Running unittests

Benchmarking pure python: Collecting 100 samples in estimated

5.1069 s (202k iterations)

pure python time: [25.019 us 25.188 us 25.377 us]

Benchmarking rust extension library: Collecting 100 samples in estimated

5.0306 s (454k iterations)

rust extension library time: [10.843 us 10.918 us 10.996 us]

We see some interesting results. Just by switching to a release build, we’ve doubled the

performance of our Rust code. The Rust version is now over twice as fast as the pure

Python code. This example is isolated, and in many cases, replacing Python with Rust

can lead to even more significant performance gains. You will need to measure your

own code to determine how much benefit you gain from adopting Rust.

 In sum, we walked through the process of incrementally adding Rust to an existing

Python application. These steps are

1 Identifying isolated code that can be extracted

2 Writing Rust code that performs the expected behavior

3 Wrapping the Rust code in language-specific bindings

4 Compiling the extension module with --release

5 Importing your new module in the non-Rust language

6 Benchmarking the old and new code paths to validate that performance has

improved

We looked at a specific example of integrating with Python, but similar steps can be

taken with many other dynamic languages. Just as pyO3 is used for Python integration

with Rust, similar crates are available for other languages. Rutie integrates with Ruby,

Neon is for Node.js, j4rs and JNI work with Java, and flutter_rust_bridge can be used

to integrate with Flutter applications. 

Summary

 serde is the de facto standard ecosystem for serializing and deserializing in

Rust.

 #[derive(serde::Deserialize)] allows structs to easily be parsed from many

different data formats.

 The derive feature of serde must be enabled to use the derive macros.

 serde_json::from_str is used to parse a Rust data structure from a JSON

string.

 pyO3 is a Rust crate that can be used to interface with the Python interpreter.

 Enabling the extension-module feature of PyO3 allows you to easily expose

Rust functions to Python.

Cargo compiles benchmark tests 
in release mode by default.
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 maturin is a command-line tool that makes developing Python modules in Rust

easier.

 maturin develop compiles and installs a Rust-based Python module in a virtual

environment.

 The auto-initialize feature of PyO3 should be enabled when running

Python code from within Rust.

 dev-dependencies in Cargo.toml holds dependencies used for unit, integra-

tion, and benchmark tests.

 Criterion is a Rust crate for benchmarking code.

 The bench sections of Cargo.toml hold information about benchmark test files.

 Each bench section requires a name field and harness = false.

 Within a benchmarking group function, use .bench_function and .iter to

run the code you want to measure.

 Use criterion::black_box to ensure the compiler does not optimize out code.

 Python::with_gil acquires the GIL with PyO3.

 PyDict are the PyO3 equivalent of Python dict objects.

 .run can be used to run Python code strings from Rust.

 Passing --release to many Cargo commands will cause the compiler to apply

optimizations, which may lead to multiple-times performance improvements.
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Testing your
Rust integrations

When shipping large refactors, it is important to validate that the code will behave

as expected. Some form of automated testing is generally considered best practice

across the industry. In this chapter, we will create automated tests for the JSON

summing code that we wrote in the last chapter. Let’s get started by adding some

unit tests to our Rust code.

7.1 Writing tests with Rust

Rust has a minimal testing system built into the language itself. You may recall a

brief mention of it from chapter 3. As we discussed in chapter 2, beginning a new

Rust application will automatically create a “Hello world!” program for you. When

This chapter covers 

 Writing automated tests in Rust

 Testing Rust code from a dynamic language

 Reusing existing tests using monkey patching

 Testing new code against old code with 

randomized inputs
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we create a blank library, we similarly are presented with automated test scaffolding.

Let’s create a blank library crate called testing to play around with some tests before

we apply what we learn to the JSON library:

$ cargo new --lib testing

Now, open testing/src/lib.rs, and look at the prebuilt test code that we get from

Cargo.

#[cfg(test)]
mod tests {

#[test]
fn it_works() {

let result = 2 + 2;
assert_eq!(result, 4);

}
}

Let’s break down all of the parts of this file to understand how they are all useful and

come together to create a test suite. We’ll start with the first two lines of the file, which

contain some syntax we have not seen before:

#[cfg(test)]
mod tests {

The second line is similar to inline modules that we have seen before, but the first line

is something new. Here we create a new module called tests that will hold all of the

test functions for our library. The first line is an attribute macro called cfg, which

allows us to tell the compiler to compile or skip certain parts of the code when operat-

ing under certain circumstances. For example, we might create OS-specific versions of

a function and use cfg to control which version should be compiled depending on

the target operating system. Developers can create custom conditional compilation

flags that allow users to specify whole features to include or exclude from compilation. 

 These flags can be attached to any item—function, struct, trait, block, or, in this

case, module. Because cfg(test) is at the module level, everything within the tests

module will only be compiled when the compiler is compiling tests. As a result, builds

of an executable or library will not include our tests. This keeps binary size down and

limits the number of lines of code that need to be validated by the compiler. 

NOTE It is not strictly required to put tests within a module with
#[cfg(test)] on it, but it is considered best practice.

Placing all tests within a module allows us to easily exclude testing code from produc-

tion builds without needing to attach #[cfg(test)] to all test functions. This reduces

the risk that a test value or function will be used accidentally and keeps binary sizes

down.

Listing 7.1 Contents of a newly initialized Rust library
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 Next, let’s take a look at the function within the module it_works:

#[test]
fn it_works() {

Like many other languages, the individual unit of testing in Rust (the minimum thing

that can fail or pass) is a function. Unlike some other languages, test function names

are not significant in Rust. They are only useful for communicating with the devel-

oper. Instead, the #[test] attribute macro signals to the compiler whose functions

contain tests. In this case, the it_works test validates that 2 + 2 equals 4. Let’s look

inside the function to see how we do this:

let result = 2 + 2;
assert_eq!(result, 4);

The assert_eq macro will compare the two values passed into it for equality. If they

are not equal, it will panic the thread running the test. The test framework will catch

the panic, and the test will be marked as “failed” with a message containing the Debug

representation of both values to aid in debugging the test. assert_eq is not a test-

specific macro; it can be used in any and all Rust code, but due to the nature of most

automated tests, it appears in them quite regularly. 

 We could write tests that don’t use assert_eq!. The assert! macro similarly vali-

dates that whatever Boolean passed into it is true and will panic if it is not. We might

also write tests that only validate that functions do not return errors, and these might

accomplish that by using .unwrap() or .expect() and contain no assert!/

assert_eq! macros. Figure 7.1 shows the most important parts of our test module. 

Now that we understand how the parts of our test fit together, let’s see what it looks

like to run a test:

$ cargo test
Compiling testing v0.1.0

#[cfg(test)]
mod tests {

#[test]
fn it_works() {

let result = 2 + 2;

assert_eq!(result, 4);
}

}

Only compiles when
compiling tests

Creates a module
called tests This function

is a test.

Panics the test
thread if result
does not equal 4

Figure 7.1 Diagram of a test module
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Finished test [unoptimized + debuginfo] target(s) in 0.31s
Running unittests

running 1 test
test tests::it_works ... ok

test result: ok. 1 passed; 0 failed;

Doc-tests testing

running 0 tests

The most important part of this output is the line that has the name of the test we

wrote alongside ok, which indicates that the test ran successfully. Let’s also take a look

at what we see when a failing test is added to the mix. Add the it_does_not_work test

to our lib.rs file. 

#[cfg(test)]
mod tests {

#[test]
fn it_works() {

let result = 2 + 2;
assert_eq!(result, 4);

}

#[test]
fn it_does_not_work() {

let result = 2 + 2;
assert_eq!(result, 5);

}
}

Let’s run this:

$ cargo test

Compiling testing v0.1.0

Finished test [unoptimized + debuginfo] target(s) in 0.33s

Running unittests

running 2 tests

test tests::it_works ... ok

test tests::it_does_not_work ... FAILED

failures:

---- tests::it_does_not_work stdout ----

thread 'tests::it_does_not_work' panicked at 'assertion failed:

left: `4`,

right: `5`', testing/src/lib.rs:12:5

note: run with `RUST_BACKTRACE=1` environment variable to display backtrace

failures:
tests::it_does_not_work

Listing 7.2 A test that fails

We assert 2 + 2 = 5, 
something that always fails.
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test result: FAILED. 1 passed; 1 failed;

error: test failed, to rerun pass '--lib'

This output contains a lot of information. We still get the passing it_works test, but

the it_does_not_work test is highlighted as failing. After the list of tests, we can see

the captured stdout from the failing test, which shows us the two values passed to

assert_eq. We can use these values to determine where we went wrong. We also get

the filename and line number of the failing assert_eq macro. Recall from chapter 2

that the note about RUST_BACKTRACE is generic and printed any time a thread panics. 

 By default, stdout and stderr are captured by the Rust test framework and not

emitted to the console. They are stored in memory and only emitted when a test fails.

Consequently, you can print out as many log messages as you’d like during test execu-

tion, and your output will stay clean. Let’s take a look at how this works by adding

some output to our tests.

#[cfg(test)]
mod tests {

#[test]
fn it_works() {

eprintln!("it_works stderr");
println!("it_works stdout");
let result = 2 + 2;
assert_eq!(result, 4);

}

#[test]
fn it_does_not_work() {

eprintln!("it_does_not_work stderr");
println!("it_does_not_work stdout");
let result = 2 + 2;
assert_eq!(result, 5);

}
}

And let’s see what the console output of this looks like:

$ cargo test
Compiling testing v0.1.0
Finished test [unoptimized + debuginfo] target(s) in 0.31s
Running unittests

running 2 tests
test tests::it_works ... ok
test tests::it_does_not_work ... FAILED

failures:

---- tests::it_does_not_work stdout ----
it_does_not_work stderr

Listing 7.3 Writing to stdout and stderr from tests
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it_does_not_work stdout
thread 'tests::it_does_not_work' panicked at 'assertion failed:

left: `4`,
right: `5`', testing/src/lib.rs:16:5

note: run with `RUST_BACKTRACE=1` environment variable to display backtrace

failures:
tests::it_does_not_work

Notice that we get stdout and stderr streams unified under the stdout banner from

the test output, but we don’t get either message from the it_works test. Sometimes it

can be beneficial to get full output streams from all tests by disabling capturing. We

can do this by passing the --nocapture flag to the test binary. It is important to note

that we are passing this flag to the test binary and not to Cargo. We can do this using

an extra -- to separate the arguments for Cargo with arguments for the test binary.

Let’s do that now:

$ cargo test -- --nocapture
Finished test [unoptimized + debuginfo] target(s) in 0.03s
Running unittests

running 2 tests
it_does_not_work stderr
it_does_not_work stdout
thread 'tests::it_does_not_work' panicked at 'assertion failed:

left: `4`,
right: `5`', testing/src/lib.rs:16it_works stderr

:5it_works stdout

note: run with `RUST_BACKTRACE=1` environment variable to display backtrace
test tests::it_works ... ok
test tests::it_does_not_work ... FAILED

failures:

failures:
tests::it_does_not_work

test result: FAILED. 1 passed; 1 failed;

error: test failed, to rerun pass '--lib'

It may be a bit difficult to see, but notice that we’re now getting the output of the

it_works test along with the it_does_not_work test. The output streams are muddied

together, though, because Rust runs tests in parallel by default. We can clean this up a

bit by running the tests only from a single thread, which is controlled via the --test-

threads argument:

$ cargo test -- --nocapture --test-threads=1
Finished test [unoptimized + debuginfo] target(s) in 0.03s
Running unittests

Notice it_works 
stderr at the end 
of this line.

Notice it_works stdout at
the end of this line.
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running 2 tests
test tests::it_does_not_work ... it_does_not_work stderr
it_does_not_work stdout
thread 'main' panicked at 'assertion failed: `(left == right)`

left: `4`,
right: `5`', chapter-07/listing_03_stdout/src/lib.rs:16:5

note: run with `RUST_BACKTRACE=1` environment variable to display backtrace
FAILED
test tests::it_works ... it_works stderr
it_works stdout
ok

failures:

failures:
tests::it_does_not_work

test result: FAILED. 1 passed; 1 failed;

Now, we see the outputs independently, but serial test execution isn’t great for run

time. Usually, when running tests, we won’t want to print out all the output, and we

won’t want to run all the tests serially like this. For now, let’s delete the output code

and the failing test. Your code should now look like the library crate starter code:

#[cfg(test)]
mod tests {

#[test]
fn it_works() {

let result = 2 + 2;
assert_eq!(result, 4);

}
}

When writing Rust crates that will be used by others, it is also considered best practice

to document your functions. Unfortunately, documentation and examples can fre-

quently become out of date. Rust has a system in place to help; it supports running

code examples in documentation via the testing system. Let’s look at a short example

to see how it works. 

7.1.1 Documentation tests

Imagine you are writing a small function called add that takes in two numbers and

adds them together. You want to make the code as easy to use as possible for the devel-

oper consuming your library, so you write some comments. Let’s add this function to

our lib.rs file outside of the tests module. 

// Add together two i32 numbers and return the result of that addition
pub fn add(x: i32, y: i32) -> i32 {

x + y
}

Listing 7.4 Add function
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Now this comment looks reasonable enough when looking at the source code, but

Rust has a powerful documentation system built in that we can access by changing our

comment slightly. Instead of using the standard comment with two slash symbols,

using three slashes creates a documentation comment, or doc comment for short. These

comments are associated with items that will be picked up by Rust’s documentation

system. Let’s make one now. 

/// Add together two i32 numbers and return the result of that addition
pub fn add(x: i32, y: i32) -> i32 {

x + y
}

The difference is subtle from a code perspective, but let’s see what we can do with it.

Let’s generate the documentation for our library and look at the output:

$ cargo doc --open

This command generates documentation for all public items in your crate and opens

a web browser to that documentation. Click the add function to see its type signature

and the doc comment that we just wrote, as shown in figure 7.2. 

Figure 7.2 Screenshot of documentation for the add function

In addition to the documentation itself, we can add examples to doc comments that

are validated when running tests. Let’s add a few now. For the sake of completeness,

we will add one that passes, one that fails, and one that does not compile.

Listing 7.5 Giving the add function a documentation comment
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/// Add together two i32 numbers and return the result of that addition
/// ```
/// assert_eq!(testing::add(2, 2), 4);
/// ```
///
/// ```
/// use testing::add;
/// assert_eq!(add(2, 2), 5);
/// ```
///
/// ```
/// use testing::add;
/// assert_eq!(add("hello", 2), 5);
/// ```
pub fn add(x: i32, y: i32) -> i32 {

x + y
}

Notice that these are Markdown code blocks. Doc comments support Markdown syn-

tax for making lists, links, bolding, italics, and more. It is also important to note that

each doc comment is compiled as a separate crate. As a result, it only has access to the

public API of your crate, and you must either import items from your crate or use a

fully qualified path; these items are meant to be examples of the public API for the

users of your crate.

 Notice that the second doc test will fail. It contains an assertion that 2 + 2 = 5,

which is nonsense. The third test won’t even compile as it tries to pass the string slice

"hello" where an i32 is required. Let’s see how Rust’s testing system shows us this fail-

ure to document:

$ cargo test
Compiling testing v0.1.0
Finished test [unoptimized + debuginfo] target(s) in 0.30s
Running unittests

running 1 test
test tests::it_works ... ok

test result: ok. 1 passed; 0 failed;

Doc-tests chapter-07-listing-06

running 3 tests
test src/lib.rs - add (line 11) ... FAILED
test src/lib.rs - add (line 2) ... ok
test src/lib.rs - add (line 6) ... FAILED

failures:

---- src/lib.rs - add (line 11) stdout ----
error[E0308]: mismatched types

Listing 7.6 Documentation tests
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--> src/lib.rs:13:16
|

5 | assert_eq!(add("hello", 2), 4);

| ^^^^^^^ expected `i32`, found `&str`

error: aborting due to previous error

For more information about this error, try `rustc --explain E0308`.
Couldn't compile the test.

---- src/lib.rs - add (line 6) stdout ----
Test executable failed (exit code 101).

stderr:
thread 'main' panicked at 'assertion failed: `(left == right)`

left: `4`,

right: `5`', src/lib.rs:5:1
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace

failures:
src/lib.rs - add (line 11)

src/lib.rs - add (line 6)

test result: FAILED. 1 passed; 2 failed;

This code has no separate doc test command; all types of tests run when we run cargo

test. We get the ok from the it_works test, and it then immediately go into running

the doc tests. 

 The doc test that fails to compile does not block the compilation of the entire test.

It is reported only as a part of the individual doc test that failed.

 Notice how these failures appear. Both indicate failure on line 5, but that does not

match the line of the file where the errors appear. This is because doc tests are

wrapped in an implicit main function, and the line numbers coming from these panic

messages are not reliable. Instead, we should look at the line number of the test. src/

lib.rs - add (line 6) and src/lib.rs - add (line 11) point us to the code blocks

where the failing doc tests begin. Now we can update our example so that it contains

the correct code. 

/// Add together two i32 numbers and return the result of that addition
/// ```
/// assert_eq!(testing::add(2, 2), 4);

/// ```
///
/// ```

/// use testing::add;
/// assert_eq!(add(3, 2), 5);
/// ```

pub fn add(x: i32, y: i32) -> i32 {

Listing 7.7 Passing doc tests
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x + y
}

Running the tests now shows that they pass as expected:

$ cargo test
Compiling testing v0.1.0
Finished test [unoptimized + debuginfo] target(s) in 0.41s
Running unittests

running 1 test
test tests::it_works ... ok

test result: ok. 1 passed; 0 failed;

Doc-tests testing

running 2 tests
test src/lib.rs - add (line 2) ... ok
test src/lib.rs - add (line 6) ... ok

test result: ok. 2 passed; 0 failed;

Let’s also regenerate our documentation to see how the examples will look for our

crate’s users, as shown in figure 7.3:

$ cargo doc --open

Figure 7.3 Screenshot of documentation for the add function with a doctest

Now that we understand how to write tests more generally, let’s add some tests for the

rust_json crate that we created in chapter 6. 
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7.1.2 Adding tests to existing code

Open the lib.rs file from the rust_json crate. It should look like the following

listing. 

use pyo3::prelude::*;

#[derive(Debug, serde::Deserialize)]
struct Data {

name: String,
value: i32,

}

#[pyfunction]
fn sum(input: &str) -> i32 {

let parsed: Data = serde_json::from_str(input).unwrap();

parsed.name.len() as i32 + parsed.value
}

#[pymodule]
fn rust_json(_py: Python, m: &PyModule) -> PyResult<()> {

m.add_function(wrap_pyfunction!(sum, m)?)?;

Ok(())
}

Now, let’s create a test module and write a basic test. 

...

#[cfg(test)]
mod tests {

use crate::sum;

#[test]
fn test_stokes_baker() {

assert_eq!(
sum("{ \"name\": \"Stokes Baker\", \"value\": 954832 }"),
954844

);
}

}

Let’s run the test to ensure that it works:

$ cargo test
Compiling rust_json
Finished test [unoptimized + debuginfo] target(s) in 7.56s
Running unittests

Listing 7.8 rust_json/src/lib.rs from chapter 6

Listing 7.9 Basic test for rust_json::sum
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running 1 test
test tests::test_stokes_baker ... ok

test result: ok. 1 passed; 0 failed;

This test validates that our code behaves as expected with this small input, but we can

improve a few things. First, all of those escapes in the string to allow us to put a literal

double quote are a bit annoying. Thankfully, Rust has a way for us to get around this.

We can use a raw string. 

RAW STRINGS

Raw strings are string literals that do not parse escape sequences and can be opened/

closed by something other than a single double-quote character. We can turn a nor-

mal string into a raw string by putting an r just before the opening quotation mark.

This r disables escape sequences within the string. Let’s try to do this on the JSON

string literal in our new test:

sum(r"{ \"name\": \"Stokes Baker\", \"value\": 954832 }"),

If we try to run the test now, it will not compile! The error is also quite long and diffi-

cult to understand:

$ cargo test
Compiling rust_json v0.1.0

error: unknown start of token: \
--> src/lib.rs:30:21
|

30 | sum(r"{ \"name\": \"Stokes Baker\", \"value\": 954832 }"),
| ^

error: suffixes on a string literal are invalid
--> src/lib.rs:30:11
|

30 | sum(r"{ \"name\": \"Stokes Baker\", \"value\": 954832 }"),
| ^^^^^^^^^^ invalid suffix `name`

error: expected one of `)`, `,`, `.`, `?`, or an operator,
found `": \"Stokes Baker\", \"value\": 954832 }"`

--> src/lib.rs:30:22
|

30 | sum(r"{ \"name\": \"Stokes Baker\", \"value\": 954832 }"),
| -^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
| expected one of `)`, `,`, `.`, `?`, or an operator
| |
| help: missing `,`

error[E0061]: this function takes 1 argument but 2 arguments were supplied
--> src/lib.rs:30:7
|

30 | sum(r"{ \"name\": \"Stokes Baker\", \"value\": 954832 }"),
| ^^^ ---------- -----------------------------------------
| | supplied 2 arguments
| |
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| expected 1 argument
|

This error occurs because turning our string literal into a raw string turns off the

escape sequences that allow us to use literal double-quote characters. When the com-

piler sees the first double-quote character before the n in name, it now treats it as the

end of the string. Figure 7.4 shows how the compiler now parses this code.

Figure 7.4 Parsing our raw string

This code is currently worse than the code we had before, which can be compiled and

executed. We can fix these errors with a clever addition Rust has on its raw strings. We

can use a delimiter other than a single double-quote character for the beginning and

end of the string. We can also pad the double quotes with any number of octothorpes

(aka “number sign,” “pound sign,” “hash sign,” #). By taking these steps, we unlock

the ability to write string literals that contain double-quote characters without escap-

ing them. The code looks like this:

sum(r#"{ "name": "Stokes Baker", "value": 954832 }"#),

This method makes it easier to read our JSON strings. We used only a single octo-

thorpe, but if we needed to write a literal "# inside of our string, we could add as many

octothorpes as we wanted to the start and end of the string to denote its beginning

and end—for example:

println!("{}", r###"hello"#world"##how are you today?"###);

This line prints out the string

hello"#world"##how are you today?

This code works because we need to provide a double quote and three octothorpes to

end the string, and the interior items provide only one or two octothorpes. Placed in

the full code, our new raw string looks like the following listing.

use pyo3::prelude::*;

#[derive(Debug, serde::Deserialize)]
struct Data {

Listing 7.10 Raw string used in JSON test

sum(r"{ \"name\": \"Stokes Baker\", \"value\": 954832 }"),

Invalid syntax Invalid syntax Invalid syntax

String "{ \" String ": \" String ", \" String ": 954832"
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name: String,
value: i32,

}

#[pyfunction]
fn sum(input: &str) -> i32 {

let parsed: Data = serde_json::from_str(input).unwrap();

parsed.name.len() as i32 + parsed.value
}

#[pymodule]
fn rust_json(_py: Python, m: &PyModule) -> PyResult<()> {

m.add_function(wrap_pyfunction!(sum, m)?)?;

Ok(())
}

#[cfg(test)]
mod tests {

use crate::sum;

#[test]
fn test_stokes_baker() {

assert_eq!(
sum(r#"{ "name": "Stokes Baker", "value": 954832 }"#),
954844

);
}

}

And let’s validate that our test still passes:

$ cargo test
Finished test [unoptimized + debuginfo] target(s) in 8.33s
Running unittests

running 1 test
test tests::test_stokes_baker ... ok

test result: ok. 1 passed; 0 failed;

Before we move on to testing our Rust code from Python, let’s add a few more test

cases for posterity.

...

#[cfg(test)]
mod tests {

use crate::sum;

#[test]
fn test_stokes_baker() {

Listing 7.11 Additional test cases for our Rust code

The line 
we changed
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assert_eq!(
sum(r#"{ "name": "Stokes Baker", "value": 954832 }"#),
954844

);
}

#[test]
fn test_william_cavendish() {

assert_eq!(
sum(r#"{ "name": "William Cavendish", "value": -4011 }"#),
-3994

);
}

#[test]
fn test_ada_lovelace() {

assert_eq!(
sum(r#"{ "name": "Ada Lovelace", "value": 18151210 }"#),
18151222

);
}

}

And they should all now pass:

$ cargo test
Finished test [unoptimized + debuginfo] target(s) in 7.15s

Running unittests

running 3 tests
test tests::test_ada_lovelace ... ok
test tests::test_stokes_baker ... ok
test tests::test_william_cavendish ... ok

test result: ok. 3 passed; 0 failed;

Great! Now that we have some basic tests written in Rust, let’s look at how our new

Rust code can use existing tests written against the original Python implementation. 

7.2 Testing Rust code using Python

In this section, we discuss updating existing Python tests to cover our new Rust code in

addition to the existing Python code. The existing tests we will be updating are written

in Python using the pytest framework. pytest is a Python testing framework

designed to make it easy to write small, readable tests. 

NOTE This section requires us to manipulate Python virtual environments
and assumes that you are using a virtual environment setup based on the
instructions from chapter 6. If you do not have this setup, you will not be suc-
cessful in this section.

First, let’s install pytest in our rust-json virtual environment:

(rust-json) $ pip install pytest
...
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Successfully installed
attrs-21.4.0
iniconfig-1.1.1
packaging-21.3
pluggy-1.0.0
py-1.11.0
pyparsing-3.0.7
pytest-7.0.1
tomli-2.0.1

For a refresher, the following listing shows our original Python source code.

import sys
import json

s = 0

for line in sys.stdin:
value = json.loads(line)
s += value['value']
s += len(value['name'])

print(s)

To be more testable, we’re going to turn this code into a function with defined inputs

and outputs, rather than something that just operates on stdin/stdout. The program

will now look like the following listing.

import sys
import json

def sum(lines_iter):
s = 0

for line in lines_iter:
value = json.loads(line)
s += value['value']
s += len(value['name'])

return s

if __name__ == '__main__':
print(sum(sys.stdin))

Let’s imagine that we already have a pytest file set up with a single test in it to start.

This test runs through 10 lines of data with known properties and a known sum value.

This test file is called main_test.py.

Listing 7.12 Python program we will be testing

Listing 7.13 Python program after being updated to use a function

This Python construct is 
similar to the main function 
in other languages.



204 CHAPTER 7 Testing your Rust integrations

 

import main

def test_10_lines():
lines = [

'{ "name": "Stokes Baker", "value": 954832 }',
'{ "name": "Joseph Solomon", "value": 279836 }',
'{ "name": "Gonzalez Koch", "value": 140431 }',
'{ "name": "Parrish Waters", "value": 490411 }',
'{ "name": "Sharlene Nunez", "value": 889667 }',
'{ "name": "Meadows David", "value": 892040 }',
'{ "name": "Whitley Mendoza", "value": 965462 }',
'{ "name": "Santiago Hood", "value": 280041 }',
'{ "name": "Carver Caldwell", "value": 632926 }',
'{ "name": "Tara Patterson", "value": 678175 }',

]

assert main.sum(lines) == 6203958

pytest will detect any function that begins with test_ and run it automatically. In this

case, it will treat test_10_lines as a test and run it when we invoke pytest. Let’s do

that now to validate that it works as expected before we start to make modifications:

(rust-json) $ pytest -v
===========================================================================
platform linux -- Python 3.8.10, pytest-7.0.1, pluggy-1.0.0
cachedir: .pytest_cache
collected 1 item

main_test.py::test_10_lines PASSED [100%]

===========================================================================

It’s good practice to make a test fail once, so let’s modify our source code and rerun

the test. We’ll update the sum function to add 1 to the returned value, which should

make the test fail. 

import sys
import json

def sum(lines_iter):
s = 0

for line in lines_iter:
value = json.loads(line)
s += value['value']
s += len(value['name'])

return s + 1

if __name__ == '__main__':
print(sum(sys.stdin))

Listing 7.14 The test file main_test.py

Listing 7.15 A version of main.py that fails our test

Note the 
extra + 1.
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Now, if we rerun the test, it fails and includes an error message:

(rust-json) $ pytest -v
=========================== test session starts ===========================
platform linux -- Python 3.8.10, pytest-7.0.1, pluggy-1.0.0
cachedir: .pytest_cache
collected 1 item

main_test.py::test_10_lines FAILED [100%]

================================ FAILURES =================================
______________________________ test_10_lines ______________________________

def test_10_lines():
lines = [

'{ "name": "Stokes Baker", "value": 954832 }',
'{ "name": "Joseph Solomon", "value": 279836 }',
'{ "name": "Gonzalez Koch", "value": 140431 }',
'{ "name": "Parrish Waters", "value": 490411 }',
'{ "name": "Sharlene Nunez", "value": 889667 }',
'{ "name": "Meadows David", "value": 892040 }',
'{ "name": "Whitley Mendoza", "value": 965462 }',
'{ "name": "Santiago Hood", "value": 280041 }',
'{ "name": "Carver Caldwell", "value": 632926 }',
'{ "name": "Tara Patterson", "value": 678175 }',

]

> assert main.sum(lines) == 6203958
E assert 6203959 == 6203958
E +6203959
E -6203958

main_test.py:17: AssertionError
========================= short test summary info =========================
FAILED main_test.py::test_10_lines - assert 6203959 == 6203958
============================ 1 failed in 0.01s ============================

Now remove the + 1 from the end of the return statement and rerun the test to vali-

date that we’ve restored to working functionality. Next, let’s update our Python pro-

gram to use the Rust JSON summing library.

import sys

import rust_json

def sum(lines_iter):
s = 0

for line in lines_iter:
s += rust_json.sum(line)

return s

if __name__ == '__main__':
print(sum(sys.stdin))

Listing 7.16 Python program rewritten to use our Rust library
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The test should continue to pass after this change is made:

(rust-json) $ pytest -v
=========================== test session starts ===========================
platform linux -- Python 3.8.10, pytest-7.0.1, pluggy-1.0.0
cachedir: .pytest_cache
collected 1 item

main_test.py::test_10_lines PASSED [100%]

============================ 1 passed in 0.01s ============================

In a larger existing application, hopefully more existing tests would exercise more

code paths in the Rust code. Updating tests to use a new code path is all well and

good, but it would be nice to test the Rust version against the original Python version

more directly so we can determine whether and, if so, how the two differ. We can cre-

ate a test that runs the two versions on randomized inputs and compares the outputs.

 Before we add the randomization, let’s write a utility function that allows us to run

the sum function backed by either the original Python code or the new Rust function.

We’re going to do this using monkey patching. 

7.2.1 Monkey patching

Monkey patching is a process for dynamically redefining items in programs, and it’s

commonly used when writing unit tests to swap deep dependencies between versions or

replace real I/O resources with fake ones. Let’s take a look at how we can write a func-

tion that uses monkey patching to call two different versions of the summing code. 

 We’re going to add a test and a helper function that compares the two versions. We

also need to provide the original Python implementation of the function here so that

we can use it to override the Rust version.

from pytest import MonkeyPatch

def test_compare_py_rust():
compare_py_and_rust(

['{ "name": "Stokes Baker", "value": 954832 }']
)

def python_sum(line):
import json

value = json.loads(line)
return value['value'] + len(value['name'])

def compare_py_and_rust(input):
rust_result = main.sum(input)

with MonkeyPatch.context() as m:
m.setattr(main.rust_json, 'sum', python_sum)
py_result = main.sum(input)

assert rust_result == py_result

Listing 7.17 Test comparing the output of Rust and Python versions
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We are not going to linger too long on the exact Python syntax that’s required here,

but let’s break down what’s happening a bit:

from pytest import MonkeyPatch

First, we need to import the MonkeyPatch class from pytest1. This class allows us to

override the rust_json.sum function later:

def test_compare_py_rust():
compare_py_and_rust(

['{ "name": "Stokes Baker", "value": 954832 }']
)

The new test runs our helper comparison function with a single known input. In the

future, we will update this test to pass in randomized inputs:

def python_sum(line):
import json

value = json.loads(line)
return value['value'] + len(value['name'])

Next, we redefine the original Python implementation of our functionality to use as a

baseline against which we can compare our new Rust code. In this case, we moved the

functionality into the test file itself. This is not a requirement but rather something

that we did because the original Python implementation is no longer used in the main

program:

def compare_py_and_rust(input):
rust_result = main.sum(input)

with MonkeyPatch.context() as m:
m.setattr(main.rust_json, 'sum', python_sum)
py_result = main.sum(input)

assert rust_result == py_result

Finally, we have the comparison function itself. This function runs the sum function

using the rust_json.sum function and the python_sum function and then compares

the results. It uses MonkeyPatch.context to create a small area in the code where we

override the main.rust_json.sum function with our python_sum function. Let’s run

this test to validate that it passes as we expect:

$ pytest -v
=========================== test session starts ===========================
platform linux -- Python 3.8.10, pytest-7.0.1, pluggy-1.0.0
cachedir: .pytest_cache
collected 2 items

main_test.py::test_10_lines PASSED [ 50%]
main_test.py::test_compare_py_rust PASSED [100%]

============================ 2 passed in 0.01s ============================
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Let’s also briefly reintroduce a bug in our code to validate that the assertion fails when

Python results don’t match Rust results. This time we’ll add the bug to our Rust code.

Let’s change the return value of the sum function in lib.rs. 

use pyo3::prelude::*;

#[derive(Debug, serde::Deserialize)]
struct Data {

name: String,
value: i32,

}

#[pyfunction]
fn sum(input: &str) -> i32 {

let parsed: Data = serde_json::from_str(input).unwrap();

parsed.name.len() as i32 + parsed.value + 10
}

#[pymodule]
fn rust_json(_py: Python, m: &PyModule) -> PyResult<()> {

m.add_function(wrap_pyfunction!(sum, m)?)?;

Ok(())
}

Now let’s rebuild our Rust code and rerun the Python tests:

$ cd rust_json
$ cargo build
$ cd ..
$ pytest -v -k test_compare_py_rust
=========================== test session starts ===========================
platform linux -- Python 3.8.10, pytest-7.0.1, pluggy-1.0.0
cachedir: .pytest_cache
collected 2 items / 1 deselected / 1 selected

main_test.py::test_compare_py_rust FAILED [100%]

================================ FAILURES =================================
__________________________ test_compare_py_rust ___________________________

...
> assert rust_result == py_result
E assert 954854 == 954844
E +954854
E -954844

main_test.py:38: AssertionError
========================= short test summary info =========================
FAILED main_test.py::test_compare_py_rust - assert 954854 == 954844
===================== 1 failed, 1 deselected in 0.02s =====================

Listing 7.18 Rust library with a bug added

Notice the 
extra + 10.

The output is truncated 
for brevity.

Notice the difference 
between the values.
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The test fails after running because of the extra + 10 we added to the Rust code.

Notice that the result from Rust, the rust_result variable, is now 10 greater than the

Python result, stored in the py_result variable. 

 Let’s revert the Rust code back to a working state and rerun the tests to validate it’s

all working:

$ cd rust_json
$ cargo build
$ cd ..
$ pytest -v
=========================== test session starts ===========================
platform linux -- Python 3.8.10, pytest-7.0.1, pluggy-1.0.0
cachedir: .pytest_cache
collected 2 items

main_test.py::test_10_lines PASSED [ 50%]
main_test.py::test_compare_py_rust PASSED [100%]

============================ 2 passed in 0.01s ============================

Now that we know how the monkey patching itself works, let’s add some randomiza-

tion to our test to validate that it works with unknown inputs. We’ll once again write a

helper function to run a single test case through our code and then call it from a run-

ner test function.

 This Python test function runs the randomized_test_case function 100 times.

Each time we generate between 100 and 500 lines of JSON, with each of those lines

comprised of a name value that’s between 100 and 200 characters of lowercase ASCII

and a value number that’s a random integer between 0 and 10,000. 

import json
import string
import random

...

def test_random_inputs(monkeypatch):
for _ in range(100):

randomized_test_case(monkeypatch)

def randomized_test_case(monkeypatch):
number_of_lines = random.randint(100, 500)

lines = []
for _ in range(number_of_lines):

number_of_chars = random.randint(100, 200)

lines.append(json.dumps({
'name': ''.join(random.choices(

string.ascii_lowercase,

Listing 7.19 A randomized test comparing Python and Rust results
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k=number_of_chars,
)),
'value': random.randint(0, 10_000),

}))

compare_py_and_rust(monkeypatch, lines)

...

After constructing this list of lines of JSON, we feed the list of data into our previously

defined comparison function.

 This test function with its high degree of randomness may find corners in our

library that were not exposed by our manually written tests. This approach is a rather

blunt-force way to randomized testing. Specialty libraries are designed to perform

“property testing” that can more intelligently design input values to exercise specific

code paths. For our purposes, this test function is sufficient. We can control the

number of test cases easily by increasing the number of iterations in the test_

random_inputs function, which also increases the test’s run time. We’ll ask our test

runner to do more work when we increase this number, and we can easily make a test

in this way that requires hours to run. 

 The interesting thing here is that we have an existing Python implementation

against which we can test our Rust code. We can continuously generate random inputs

and feed them to both the Python code and the Rust code to ensure that both librar-

ies emit the same results.

 This chapter contains a lot of information on testing and documentation. By

applying these skills, we can have more confidence in our refactors as we deploy them

into production systems. 

Summary

 By convention, we should put Rust tests in a tests module close to the code it is

testing.

 Adding #[cfg(test)] to an item will make that item compile only when tests

are being compiled.

 We can test Rust code by writing functions with the #[test] attribute macro on

them.

 The assert_eq! macro allows us to panic a test if two values are not equal.

 cargo test will compile, discover, and run all of our test functions.

 Adding doc comments (///) before an item will add information to autogene-

rated documentation.

 cargo doc will build the documentation for a crate.

 cargo doc --open will build the documentation for a crate and open it in the

default web browser.

 Adding a code block (```) within a doc comment allows us to write an example

within the documentation that will also be compiled and run as a test.
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 Raw strings allow us to skip escaping characters that we would otherwise need to

escape in string literals.

 Raw strings are prefixed with r and must have the same number of octothorpe

(#) characters at the beginning and end (this number may be zero).

 Monkey patching can be used in many dynamic languages to perform depen-

dency injection where it would otherwise be difficult. It can be used to test code

with different versions of the same function. 
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Asynchronous Python
with Rust

Python is the ultimate prototyping language. It holds this title due to its simplicity

and flexibility. Designed by Guido van Rossum in the 1980s and released in 1991,

its original aim was to build a better programming language (a successor to a lan-

guage known as ABC). What van Rossum developed first was an interpreter and

runtime for the language; then, he slowly designed the first versions of Python.

From there, people started to see the power in a language that was easy to read and

write. By forcing developers to use indention for code blocks, Python automatically

provides some structure to an application’s source code. Since it is an interpreted

language, developers can see quickly whether their application works as intended
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without the need to compile their code, which, on large projects, can take time.

Python became beloved by many as it grew, and it still is today. The flexibility and sim-

plicity of the language have lowered the barrier to entry for those in academic and

research fields, and thus many research projects and production systems run on

Python. This has led to a plethora of mathematics and simulation libraries that are

used in developing ML models and data mining.

 Since the language is interpreted, the underlying interpreter can be written in

many different languages, leading to projects like Jython, which allows you to access

Java libraries, and IronPython, which supports .NET. However, you may be more famil-

iar with CPython, or Python written in C, which is the default installation for many.

When the interpreter is written in C, under the hood, Python can read and use C and

C++ libraries. This ability alone provides Python with a host of libraries and some per-

formance benefits.

 Yet there are tradeoffs. Python is a simple language, which makes it fast for devel-

opment but at the expense of performance speed, as we will see. Python also gives up

some flexibility by not providing type safety out of the box. Since Python is inter-

preted, it must rely on the underlying interpreter to handle these various pieces. You

may be wondering where Rust fits within this world of Python interpreters. We will be

using Cython (the standard Python distribution), which, as mentioned, uses C librar-

ies and, therefore, can interact with Rust. We will once again use PyO3 from chapter 6,

but instead of having Rust consume Python, we will have Python consume Rust.

 In this chapter, we will explore writing a computationally expensive function in

Python. Then we will find ways to scale the application to call this function multiple

times and measure our improvement over time as we slowly move toward Rust. We will

see that Rust once again provides us with the safety we need to go fast—even in

Python.

8.1 Generating a Mandelbrot set in Python

Benoit Mandelbrot is known in mathematics for his research on fractal geometry and

was one of the first to use computer visualization as part of his research. Fractal geom-

etry is a fascinating branch of mathematics that looks at the recursive nature of func-

tions and the structures they create, as shown in figure 8.1. When zooming in on a

fractal, you will find that it never ends but continues to generate shapes and patterns.

This property can be highly useful in doing certain calculations—for example, calcu-

lating irregular shapes, such as coastlines. However, fractal geometry’s reliance on

recursive definitions and complex numbers makes it computationally complex and,

therefore, computationally expensive. 
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With Python and its amazing mathematics

libraries, an application generating a Man-

delbrot set is relatively simple to create.

What’s interesting about many of Python’s

core modules and libraries is that they are

sometimes written in C and C++ for perfor-

mance reasons. So, computationally heavy

modules like Pillow, which is used in math-

ematical calculations, are written in C and

C++. In other words, the performance of

the code we are using is not necessarily lim-

ited by Python but instead by how Python

works.

    Python is an interpreted language, and

we will see the implications of that later in

the chapter. Since it is interpreted, it

requires an interpreter that takes Python

byte code and runs the application. Compiled languages like C and Rust will compile

the source code based on the operating system they are supposed to run on. This

compiled code creates a special type of code known as object code that the operating sys-

tem and processor can understand. Byte code is similar to object code in that it is

interpreted by an underlying system. However, whereas object code is specific to the

processor running the code, byte code is interpreted by the underlying virtual run-

time. Languages like Python and Java provide an interpreter or runtime, an applica-

tion that runs on a given system configuration; the byte code remains the same. 

 So, ultimately, Python is a language that can be interpreted by other languages that

have implemented the Python runtime, allowing Python to interoperate with those

other languages. The most common implementation of Python is CPython, where the

Python code is run via an interpreter written in C and can, therefore, use C modules

and libraries. Since Rust can interoperate with C as well, we will eventually see how

these paths converge. In the meantime, we will use the existing Python and C relation-

ship before we introduce Rust.

 Let’s see how we make a Mandelbrot set image like the one in figure 8.1 in Python

using existing libraries and then refactor the application to become more perfor-

mant. To start, let’s create a new directory and a virtual environment to isolate our

Python project. To do this, create a new directory and navigate there. Then create a

virtual environment and install Pillow.

python -m venv venv
./venv/bin/activate
pip install Pillow

Listing 8.1 Console: Initializing the project

Figure 8.1 Mandelbrot sets can include 

repeated patterns as you zoom in since they are 

recursive in nature.
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Once this is set, we can create our algorithm and render an image of our Mandelbrot

set. Open a new file called main.py and add the following.

from PIL import Image

def mandelbrot_func(size: int, path: str, range_x0: float, range_y0: float,

➥range_x1: float, range_y1: float):

image = Image.new(mode='RGB', size=(size, size))

size_f = float(size)

x_range = abs(range_x1 - range_x0)

x_offset = x_range / 2.0

y_range = abs(range_y1 - range_y0)

y_offset = y_range / 2.0

for px in range(size):

for py in range(size):

x0 = float(px) / size_f * x_range - x_offset

y0 = float(py) / size_f * y_range - y_offset

c = complex(x0, y0)

i = 0

z = complex(0, 0)

while i < 255:

z = (z * z) + c

if float(z.real) > 4.0:

break

i += 1

image.putpixel((px, py), (i, i, i))

image.save(path)

mandelbrot_func(1000, "single.png", -5.0, -2.12, -2.5, 1.12)

You will notice that the code takes a little while to run because we are using complex

numbers to calculate the value of each individual pixel on a 1,000 × 1,000 pixel image.

Each calculation is expensive, and all of the results are being written to a single image.

Now, imagine that we want to create a service that generates multiple instances of

these images. How would you design it?

8.2 Scaling

Refactoring decisions can be triggered by multiple reasons, but all are intended to

improve our code in some way. Systems evolve quickly, and it soon becomes apparent

where our code does not perform as well as we would like. These spots in our code

Listing 8.2 main.py: Using the Mandelbrot algorithm

Import Pillow 
mathematics library

Creates a new image

Creates the boundaries 
the Mandelbrot set will 
use to calculate

Iterates for each 
pixel of the image

Creates a complex number to 
be contained within the set

Places pixels in the image 
based on a calculation

Saves image to path
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where slowdowns occur are known as bottlenecks, named after the way the neck of a bot-

tle limits the overall flow out of the bottle. In the same way, the slowest function often

determines the throughput we can get out of a system. Once a system hits a limit on

performance, there are two options: rewriting the code and scaling. 

 These two options often go hand in hand because systems can be scaled in two

ways: horizontally and vertically. Horizontal scaling is adding more instances to an

already running service. This is the equivalent of spinning up extra servers or some

other machine or process. The point is that you are duplicating or cloning the exist-

ing system as it currently stands without changing the configuration of the actual

machine. Vertical scaling is adding more resources to an existing machine instance.

This is equivalent to adding a faster CPU with additional cores or additional memory.

The point is that the system itself has more resources and, in theory, can thus do more

if the application can take advantage of it.

 However, in some cases, neither vertical nor horizontal scaling can happen without

code changes. When scaling horizontally, you will need to change your code to work as

a distributed system wherein a server must work as a group rather than as an individual

instance. To get an idea of how this works, you can run more than one instance of your

Python programs at the same time. On a Unix-like system, you would type the following.

python main.py & python main.py

This code asks the operating system to run the same application twice at the same

time but in separate processes. If you were to look at the output, you would only see

one result. While our system is scaled horizontally, it is not handling outputs as unique

values. Therefore, when we run the application twice, the output will be single.png,

and the processes will overwrite each other. While the mathematical function itself is

idempotent, the service was not structured to write to a unique output. Idempotent sys-

tems will distinguish their tasks and outputs in a unique way. This can be done by the

originating system, giving the entity some unique identification. In our example, we

did not have a unique filename, so there was a conflict, and the files were overwritten.

If we were to change the output to be idempotent, we could append a unique ID or a

timestamp to ensure they aren’t overwritten. When we execute these functions on a

Unix-like system with a single & command, the operating system will execute these

scripts at the same time. Running multiple versions of the same code without chang-

ing the resources is known as horizontal scaling. 

 Horizontal scaling happens naturally as our system grows because it builds redun-

dancy into our system, as figure 8.2 shows. But when more than one server is running

our application, a certain level of coordination needs to occur at both a routing level

and a system level. First, to coordinate, an external mechanism needs to run to distrib-

ute the tasks to the running services. In web applications, this is typically done

through the use of a load balancer. The load balancer’s job is just as its name

Listing 8.3 Console: Running multiple processes at once



2178.2 Scaling

describes: to distribute the load of calls coming into our system among the various

running processes. It accomplishes this through simple or complex logic, possibly

alternating between services and inspecting their current load. We don’t want two pro-

cessors grabbing the same task and doing redundant work. That means checking for

existing records or marking a task as in process.

Since this discussion is more of an architectural nature, it doesn’t particularly fit with

what we are trying to do in this book. However, it is important to note that adding

additional servers is one solution that works and is solved by load balancing and

queues, but it doesn’t necessarily take full advantage of the hardware it’s running on.

That is, the tradeoff with this particular solution is monetary cost rather than a time

cost. In contrast, vertical scaling helps provide performance increases without addi-

tional monetary costs (which makes CEOs happy).

 Vertical scaling means adding more resources to an exist-

ing system and finding a way to break up the work such that it

can be processed in smaller chunks by separate processes to

use your increased power as opposed to having multiple

machines running individual tasks. It becomes a problem in

how you break up your work. Vertical scaling is like opening

up your PC to add more RAM or a CPU with more cores, as

shown in figure 8.3. The point is to enhance the current sys-

tem to process data more quickly. However, if your applica-

tion is not developed properly, it becomes a Band-Aid

solution. To get the benefits of vertical scaling, your applica-

tion needs to be able to take advantage of the new resources

properly. It becomes more of a software problem than what

we saw in horizontal scaling. However, the solution to the

problem is similar in that the work needs to be distributed

throughout the process. Instead of a load balancer or some external system managing

the tasks being distributed, the application or operating system must split up the
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Memory

CPU
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Figure 8.2

Horizontal scaling 

means adding more 

physical hardware

Figure 8.3 Vertical 

scaling means adding 
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work. Now you have a coordination problem, possibly within the system. It’s a compli-

cated problem, and not all languages do it well.

 Unfortunately, Python does not handle running multiple processes at once very

well. Tradeoffs occur in every language, and this is one Python has made to keep its

language simple. Let’s explore how to refactor our code to scale vertically. To do this,

let’s modify our code to create multiple images at once during a single process. We are

simply going to add a loop.

def main():

for i in range(0,8):

mandelbrot(1000, f"{i}.png", -5.0, -2.12, -2.5, 1.12)

if __name__ == "__main__":

main()

Running this code locally, we get a time measurement of about 46 seconds. This isn’t

great, but it can be our baseline for improvement. Right now, our problem is that this

entire process is being run synchronously, meaning each process is waiting for the oth-

ers to finish before it can begin working. This is known as blocking, where a process

cannot proceed until the provided resource is available. To improve our service, we

want to allow our processes to be independent of each other without waiting. This is

known as asynchronous processing, where work can be done without waiting for a

response. Let’s see how this works. 

8.3 Asyncio

Converting our existing service into one that performs asynchronous tasks is fairly

straightforward but requires a tool to manage it, as we discussed earlier. Asynchronous

tasks are helpful because we are telling the system that we are okay waiting for a result,

which tells the CPU we don’t care which result is returned first. This gives the underly-

ing system (in this case, the Python interpreter) the freedom to return results as soon

as it has them. We don’t need to wait for Task 1 to return before Task 2 does. Addition-

ally, our system is no longer deterministic because we don’t know which process will

return first. 

 For Python to use fan-out and fan-in processes, we can add the async keyword in

front of the method definition. This tells the interpreter that it can proceed, and a

response will eventually come back when the function returns. We then need to do

the same thing with our main function but add a method to run multiple tasks on mul-

tiple threads. In the end, we need all processes to finish before the application exits.

Here, we will use a command that gathers the results into one comprehensive output.

Finally, we need to have something to manage and run the tasks in this way. Let’s take

a look at the example in the following listing. 

Listing 8.4 main.py: A simple loop
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from PIL import Image
import asyncio

async def mandelbrot_func(
size: int,
path: str,
range_x0: float,
range_y0: float,
range_x1: float,
range_y1: float):

...

async def main():
await asyncio.gather(*[

mandelbrot_func(1000, f"{i}.png", -5.0, -2.12, -2.5, 1.12)
for i in range(0,8)

])

asyncio.run(main())

When we run this command locally, the total time required to execute it on one

author’s machine is around 42 seconds. This time is an improvement over our initial

46 seconds, but not by much. Now, how do we know that this is running asynchro-

nously? If you watch the output, you will probably see the tasks running in order,

which is a bit disappointing, but let’s see if we can force this to change. Let’s add a few

lines to our Mandelbrot function to test this out.

from PIL import Image
from random import randint
import asyncio

async def mandelbrot_func(
size: int,
path: str,
range_x0: float,
range_y0: float,
range_x1: float,
range_y1: float):

s = randint(1,5)
print(f"{path} sleeping for {s} seconds")
await asyncio.sleep(s)
...

When we run this locally, we see this pattern:

0.png sleeping for 3 seconds
1.png sleeping for 1 seconds
2.png sleeping for 4 seconds

Listing 8.5 main.py: Using async and asyncio

Listing 8.6 main.py: Adding sleep

Imports the 
async library Changes the function 

to be async

Makes the main 
function async Spins out multiple instances and waits 

to return until all are completed

Kicks off 
async run

Creates a random 
number for testing

Pauses the Python thread and 
allows other processes to run

0.png is the first image created 
and needs to sleep for 3 seconds.
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3.png sleeping for 2 seconds
4.png sleeping for 1 seconds
5.png sleeping for 4 seconds
6.png sleeping for 1 seconds
7.png sleeping for 5 seconds
1.png created
4.png created
6.png created
3.png created
0.png created
2.png created
5.png created
7.png created

All of these tasks were queued to work, but they were executed based on their avail-

ability when they were not blocked by sleeping. This is why you see results returning in

a semi-random order. The first image (0.png) we schedule to create will sleep for 3

seconds. If we look at the sleep times of the various “completed” images that appear

before 0.png is created (1.png, 4.png, 6.png, and 3.png) and add up their sleep times,

we notice it adds up to more than 3 seconds. Somehow, just because 0.png was sched-

uled before all of these other images, Python isn’t going to wait around for it to be

ready. Instead, it will grab the next image that is not sleeping and ready to process. It

eventually gets back to 0.png, but not until after it has completed some additional

tasks. In fact, it needs to wait past its sleeping time and an additional 2 seconds for

3.png to be completed. What you aren’t seeing is that Python is only still allowing one

thread to run at a time. asyncio is eventually going to get faster as Python changes,

but that requires the removal of a very special value that lives within the Python inter-

preter. Before we can introduce that topic, let’s first understand how threading works

in an operating system. 

8.4 Threading

The first computers worked in a very procedural way. Input consisted of tape reels or

punch cards that would get processed by the computer and output the results to a

screen, paper, or back to tape. Timesharing systems were invented to break away from

this tradition by allowing multiple people to use the system at one time. This meant

that a very powerful computer could be used by many people and many applications

all at once, suddenly reducing the cost per person per machine and opening up the

computing world to what we experience today. Timesharing systems did this by allow-

ing multiple processes to appear to run at once and then, by extension, allowing appli-

cations to break themselves up into smaller tasks called threads. 

 There are two different types of threads that we will get into later in this chapter,

but at the core, a thread is a little package of information about a process. A thread

includes memory and the actual instructions to run. Once the processor finishes the

task it is working on, it will grab another task. After working on a thread, the processor

will pause the work on the thread due to either a timer or a signal from the thread

that it needs to wait on a resource (network, file, etc.). After a thread is paused, the

However, the 0.png image isn’t 
created exactly when it is ready 
(more than 3 seconds have passed).
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processor will pick up another thread and begin working. When you have only one

processor, it still ends up doing only one task at a time, but with threads and the speed

of the processor, it appears that the computer is doing many things at once.

 When an application cannot proceed because it needs a resource, we describe that

application as blocked. Once blocked, an application is unable to advance, so the oper-

ating system takes this opportunity to take on another task (see figure 8.4). This

method is efficient for the system as a whole but is often the source of the bottlenecks

we discussed earlier.

Figure 8.4 The CPU will try to process tasks that are not blocked.

As machines evolved, we started seeing additional processors being added. Suddenly,

there were dual-core, quad-core, and even eight-core processors! But did that mean

that our applications became faster? Only if they were written to take advantage of

these cores by dividing their work into multiple tasks. The core structure stayed the

same: one thread can only be executed on one core at a time. Previously, applications

could be written to start additional threads to spread out their work. For example, you

could have one part of an application reading data while another part processes that

data. This division of work in an application is known as concurrency. Concurrency is

often confused with parallelism, but they are not the same. 

 Parallel systems mean that a system can execute multiple threads at one time. If

you have four threads running and four cores on your machine, you are truly running

in parallel. However, many systems don’t have as many processors as they do threads,

so applications will run concurrently. Concurrency, therefore, is having multiple exe-

cutions running in the same application but not necessarily at the same time. For

example, your email application can show you a message while concurrently fetching

new messages from the server.

Ready Run

T2

Waiting

1. Task 1 runs
   until it can’t
   proceed.

T2T2

T1T1T1

Blocked

Done

Done

2. Task 2
    waits until
    CPU is
    available.

3. Task 2 runs until
    it is complete.

4. Task 1 will be
    worked on
    again.
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 Here’s another example: One author has a BlackBox Can Crusher. Cans go in one

end, and compacted cans come out the other. We can measure the rate at which the

cans are crushed to get an idea of how efficient it can be. After loading up the hopper

with cans, we measure a rate of one can crush per second. Marking the cans with num-

bered stickers, we can see the order in which the cans are crushed. The cans come out

in no particular order.

 The next day, we get a new BlackBox Can Crusher 2, which promises faster crush-

ing abilities. Now we measure a rate of two cans per second. Deciding to void the war-

ranty, we open both machines. Inside the first machine, we see one hammer that

crushes the cans with a funnel going in, while the second machine has two hammers

to crush cans. This seems like a fairly obvious solution. The cans in this example are

concurrent processes waiting to be crushed, but the machine can only crush as many

cans as it has hammers, as depicted in figure 8.5.

Figure 8.5 Within our box, we do not know how many crushers we have, and 

we have no guarantee of the order. Adding more crushers adds more throughput.

This type of concurrency at the operating system level is managed by POSIX threads,

or pthreads. These threads are managed by the operating system. Alternatively, a lan-

guage or runtime can create threads. These are known as green threads. While the main

application runs in a single thread, the application then maintains its own set of inter-

nal threads to manage. This is common in interpreted languages and virtual

machines. 

 Since Python is an interpreted language, it manages all of its threads when using

the asyncio package. Python needs to know when a portion of the service is unable to

run because it is waiting for a resource. In our example program, we were making

calls to math libraries and graphics-rendering tools. Both of these tasks are often

Single CPU Multiple CPUs
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blocked by resource constraints or are called outside of the main Python code, mak-

ing them great candidates for an asynchronous system and multithreaded computa-

tion. To do this, we will need parallelism and not just concurrency. Let’s convert our

code to use Python’s threads to see whether we can get any sort of improvement over

our asynchronous code. To begin, we need to remove the sleeps from our previous

section and add the following code. 

from concurrent.futures import ThreadPoolExecutor
import asyncio

def mandelbrot_func:
...

executor = ThreadPoolExecutor(max_workers=4)

async def mandelbrot(size: int, path: str, range_x0: float, range_y0: float,

➥range_x1: float, range_y1: float):
return executor.submit(mandelbrot_func, size, path, range_x0, range_y0,

   ➥range_x1, range_y1)

async def main():
await asyncio.gather(*[

mandelbrot(1000, f"purp{i}.png", -5.0, -2.12, -2.5, 1.12)
for i in range(0,8)

])

Now each calculation is being put on an individual operating system thread created by

Python. When you run it, you should see little to no improvement over our async-only

implementation. Why? If we are running this on three additional threads, we should

expect to see this run in about a fourth of the time, provided we have at least four

cores on our machine. Yet, by design, we aren’t. Python is a single process and, there-

fore, has some limitations. For us to see any improvement, we need to understand

what is happening within Python and then see how Rust can help. 

8.5 Global Interpreter Lock

Let’s hop back to our discussion of threads. From the previous section, we know that

there are two types of threads, one maintained by the operating system and the other

by the runtime. Python creates and manages its threads through asyncio or through

system threads using the ThreadPoolExecutor. Running the Python interpreter on

multiple threads can cause some strange issues, and so in 2003, the creator of Python

put in a Global Interpreter Lock (GIL). This tool, while simple, has vast implications

for our concurrent programs. Its simplicity allows single-threaded Python applications

to run fast while concurrent applications are safe. The GIL only allows one thread to

run while all others sleep or await input or output resources. 

Listing 8.7 main.py: Adding execution threads
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 Regardless of how expertly we try to distribute work onto threads in Python, the

GIL will prevent us from running work in parallel because Python cannot guarantee

that the code can be memory-safe, along with other issues that come about in parallel

programming a shared memory space (see figure 8.6). If multiple threads were able

to run at the same time, we could see multiple accesses to the same slots in memory,

causing various memory problems.

Figure 8.6 GIL is a lock that the interpreter gives out to allow tasks to run.

How does the GIL work? A global value within the Python interpreter is a mutex or

lock on a given resource to prevent multiple threads from accessing it at once. Think

of it as a hall pass. Only a single student can wander the halls at a given time. Having

this key allows the thread within Python to access resources available to the inter-

preter but denies any other thread access to that resource. Python can then only pro-

ceed when the lock is given back. It can then give the key to another process if it is

ready. Giving the GIL to another process allows it to run. Like a mutex, the GIL pro-

tects from two processes accessing a section of memory at the same time. Not having

this key would allow two processes to access the same values, which can lead to various

problems. In our can crusher example, we can imagine having two arms that can

crush but only one hammer. You first need to grab the hammer before you can crush,

preventing two hammers from hitting each other. 

 What we need is the ability to run parallel threads that bypass the GIL. To do that,

we need memory safety within Python. For that, we need a module that can handle

parallel threads. This can be done with C and C++, but we would like to take a safer

route by using Rust. 

8.6 PyO3

Throughout this book, we’ve seen how Rust is able to attach itself to applications writ-

ten in other languages to slowly break down the problems, allowing those applications

to use all of the safety and speed that Rust provides without needing us developers to
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overhaul our system completely. In chapter 6, we were able to use a library called PyO3,

which provided us with the proper Rust bindings to run Python code inside a Rust appli-

cation to improve our system. Now we are going to do the reverse: take Rust code and

run it inside Python. Why would we want to do that? Because refactoring a system can

be challenging, as we discussed at the beginning of the chapter. Often, teams will get

into a flow or establish a base of engineers who are good at one particular language or

have an ecosystem surrounding them that lends itself to a particular programming lan-

guage. Yet when we hit a point where we need to scale and we identify a section of code

as a bottleneck, it should be refactored. At this point, we have refactored our Python

code for performance as far as Python will let us due to the GIL. PyO3 provides us with

the tools we need to get improved performance from our application by using Rust’s

safety and speed to circumvent the GIL. Rust does this by providing the ability to release

the GIL, which will allow other threads to run. Earlier we introduced a thread pool in

Python, but we saw that the creation of threads didn’t do much to help us with our over-

all execution time. CPython does not allow you to disable the GIL directly in your code,

but as you will see, we can bypass this lock by using Rust. 

 Refactoring is an extremely powerful tool. Think about the evolution of many pro-

grams. We’ve already talked about refactoring in many contexts, but it is often easier

said than done—especially with languages like Python, which are excellent at building

prototypes but do not scale well. Ruby is another example of a scripting language that

is easy to learn and use but has difficulties scaling. This problem has to do with the

nature of the languages themselves. Trading performance for ease has always been the

tension between these easy-to-learn languages and system languages like C, C++, and

even Rust. While Rust positions itself among the replacements for C and C++, it still

isn’t as easy to write as Python.

 Even so, if you own a business that you are looking to grow, it typically isn’t best to

throw away everything you’ve done to rewrite it in some other language. Using

another language incurs additional overhead on staffing and also expands the knowl-

edge required to fully understand the system. As we saw with C and C++, replacing a

portion of the code with Rust can make this transition a little easier.

 Type maturin new to start a project, hop into that directory, and type cargo add

image num-complex. This is all we need to get started. Open src/lib.rs, and we will

add our Mandelbrot function. 

use image::{Rgb, RgbImage};
use num_complex::Complex64;
use pyo3::prelude::*;
use std::path::Path;

#[pyfunction]
fn mandelbrot_func(size: u32, p: &str, range_x0: f64,

➥range_y0: f64, range_x1: f64, range_y1: f64) {
let mut img = RgbImage::new(size, size);

Listing 8.8 lib.rs: Initial Mandelbrot function

Imports the 
image libraryImports the complex 

number libraryImports the 
PyO3 libraries

Adds a macro for 
the function to 
export to Python
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let size_f64 = size as f64;

let x_range = (range_x1 - range_x0).abs();

let x_offset = x_range / 2.0;

let y_range = (range_y1 - range_y0).abs();

let y_offset = y_range / 2.0;

let path = Path::new(p);

for px in 0..size {

for py in 0..size {

let x0 = px as f64 / size_f64 * x_range - x_offset;

let y0 = py as f64 / size_f64 * y_range - y_offset;

let c = Complex64::new(x0, y0);

let mut i = 0u8;

let mut z = Complex64::new(0.0, 0.0);

while i < 255 {

z = (z * z) + c;

if z.norm() > 4.0 {

break;

}

i += 1;

}

img.put_pixel(px, py, Rgb([i, i, i]));

}

}

img.save(path).unwrap();

}

The pymodule macro at the top of the function allows us to call this method from

Python. PyO3 will package this for us once we create a module for it to live in. To do

that, we will add one more bit of code. 

#[pymodule]
fn mandelbrot(_py: Python, m: &PyModule) -> PyResult<()> {

m.add_function(wrap_pyfunction!(mandelbrot_func, m)?)?;

Ok(())
}

To compile this, we again rely on maturin. Type maturin development to compile the

library and add it to your environment. Next, we will copy over our main.py from

before and make a few modifications to call our new module. 

Listing 8.9 lib.rs: Creating the Python module

Iterates through the pixels 
to insert into the image

Places pixels 
into image

Saves the image 
to the filesystem

Creates a module 
for Python

Adds a function 
to the module
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from mandelbrot import mandelbrot_func
import asyncio

# Remove Python implementation of Mandelbrot

async def mandelbrot(size: int, path: str, range_x0: float, range_y0: float,

➥range_x1: float, range_y1: float):
return executor.submit(mandelbrot_func, size, path, range_x0, range_y0,

    ➥range_x1, range_y1)

When we run this code using a timing method, we find that just by using Rust, we

shaved 25 seconds off of the compute time to 23 seconds! Still not ideal because we

are still blocked by the GIL. We need PyO3 to tell Python to trust us—we are safe. To

do this, we will make one extra function that we will export.

#[pyfunction]
fn mandelbrot_fast(

py: Python<'_>,
size: u32,
path: &str,
range_x0: f64,
range_y0: f64,
range_x1: f64,
range_y1: f64,

) {
py.allow_threads(|| mandelbrot_func(size, path, range_x0, range_y0,

➥range_x1, range_y1))
}

#[pymodule]
fn mandelbrot(_py: Python, m: &PyModule) -> PyResult<()> {

...
m.add_function(wrap_pyfunction!(mandelbrot_fast, m)?)?;

Ok(())
}

Then we need to create some threads to run on in Python. Here, we will import a pool

executor for threads. We will use four to see what sort of improvement we get. This

method also works for the other function we created, but you will find that the execu-

tion times are the same since we haven’t disabled the GIL. Running the fast function,

however, disables that and allows us to use true concurrency.

...
from concurrent.futures import ThreadPoolExecutor

Listing 8.10 main.py: Importing a new module

Listing 8.11 lib.rs: Adding a thread-safe function

Listing 8.12 main.py: Using a thread executor

Imports function 
from module

Calls Rust 
function

Tells Python that this function 
does not need the GIL

Imports the executor to 
run on various threads
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executor = ThreadPoolExecutor(max_workers=4)

async def mandelbrot(size: int, path: str, range_x0: float, range_y0: float,

➥range_x1: float, range_y1: float):
return executor.submit(mandelbrot_fast, size, path, range_x0, range_y0,

    ➥range_x1, range_y1)
...

When this completes, the total time is a blazing 6 seconds. That’s a significant

improvement from the original 46 seconds for pure Python and 23 seconds for our

Rust implementation without disabling the GIL. Additionally, we iteratively migrated

our code to allow for the incorporation of Rust into our existing Python application to

get an almost 5x increase in performance.

 As part of refactoring, we need to identify which aspects of our system can be

improved without affecting the larger system. This application that we wrote is obvi-

ously not production quality, but it underlines the point that often, in a language like

Python, we like the ability to be flexible and prototype. But the more we ask of our sys-

tems, the more complex they become. We could have extended this refactor to be

entirely in Rust to bypass the limitations of Python altogether. However, this library

may be used elsewhere. Or, possibly, we don’t have the support to have a whole system

written in Rust. We’ve explored how to refactor our systems to scale from prototype to

product in this chapter. While Python is amazing at prototyping, we found that Rust

can make it better. Finding the bottlenecks in your Python code can help you and

your team determine whether Rust is a solution to your speed problems.

 Remember, refactoring is a process, not a destination, and therefore, it is never

complete. Rust allows us to take these tiny steps over time to increase the visibility of

our changes and move toward a solution that works best for our project. 

Summary

 Python is a great prototyping language but suffers from performance issues.

 Scaling can be done to improve performance by adding additional hardware or

extending current hardware.

 Scaling requires developers to modify their code to take advantage of these

changes.

 Python’s ability to run concurrent processes is limited by a global lock.

 Rust can bypass this lock to increase overall performance due to its inherent

memory safety.

 Using Rust and PyO3, we can bypass the global lock in Python to unlock con-

current processes.

 Refactoring Python applications to have memory-safe concurrency patterns

using Rust can reduce latency and increase performance. 

Sends the function and parameters 
to thread for future execution
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WebAssembly for
refactoring JavaScript

Finding a single language with which to develop all parts of an application has been

a goal for many who create programming languages. “Write once, run anywhere”

was a tagline for Java because, at the time, it seemed like as long as a system could

run Java’s virtual machine, your application would run there, too. Obviously, this

had its limitations, but in essence, it was what made Java such a popular platform,

even to this day. This idea of cross-platform software isn’t new; in fact, it was a goal

of early compilers to allow programmers to write an application once and compile

it to run on other machines.

 Rust, as we have seen, follows this same pattern. Instead of working like Java—

that is, having a virtual machine to run an application—Rust uses different compile

targets. Additionally, the examples we have looked at so far have relied, on some

This chapter covers

 Writing a Rust library to be used in JavaScript

 Integrating WebAssembly into an existing 

JavaScript project and component

 Writing a web component entirely in Rust and 

importing it into an existing project
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level, on Rust’s C integration for importing libraries. In this chapter, we are going to

explore a new approach to “write once, run anywhere,” but instead of writing Java

(breathe a sigh of relief), we will be working with a technology that was built to be por-

table for the web.

9.1 What is WebAssembly?

In 2018, the World Wide Web Consortium (W3C) published a specification that would

allow compilation to target a special sort of bytecode that could be run in the browser.

The idea is that compiled languages such as C++, Go, and Rust could target their com-

pilers to write binaries in Web Assembly (Wasm) bytecode instead of targeting an

AMD or Intel processor. The target for Wasm is a WebAssembly System Interface

(WASI), which essentially is the runtime to run Wasm bytecode. 

 Now, we are seeing several technologies spring up around Wasm, along with some

pretty cool projects. Developers are finding that they can put almost anything in the

web browser, including whole operating systems! Wasm is used to run code in cloud

workers, and the developers of some JavaScript libraries are refactoring portions of

their code to use Wasm. Loading Wasm requires JavaScript to pull the library in and

initialize it, as shown in figure 9.1.

So why, as a Rust developer, should you care? Well, while a large portion of systems-

level code is written in Java or a C-based language, the most-used programming lan-

guages are JavaScript-based languages that run in the web browser (figure 9.2). As

mentioned earlier, Wasm was developed to be a universal binary that was targeted to

run in the browser as well. This gives us the ability to write Rust code that can interact

with or replace portions of JavaScript code, making it possible for us to refactor pieces

of it to Rust.

Rust’s Wasm implementation

provides an async loader to

be loaded by JavaScript.

Rust compiles to Wasm.

Figure 9.1 Wasm loaded into a 

JavaScript frontend



2319.2 Moving from JavaScript to Rust

 

Figure 9.2 Github Octoverse Survey of most-used languages, 2022

There is also a flip side to this Rust/Wasm relationship: because Wasm is a universal

binary that is supposed to run anywhere, we can run the Wasm library within Rust.

Consequently, we can refactor old code by importing portions of it into Rust via

Wasm. First, we will see how we can write a Rust function and import it into JavaScript

via Wasm. Then, in the next chapter, we will take code that has been compiled to

Wasm and run it within a Rust application. 

9.2 Moving from JavaScript to Rust

Before we dive into the actual code, it is important to understand the world of Java-

Script and how refactoring it differs from how we’ve refactored thus far. Up until now,

we have focused on code that runs within a terminal rather than a web browser. C++

and Python are really C code underneath, whereas JavaScript is its own scripting lan-

guage made for the web browser. Found on 98% of websites, it is an essential tool of

the web. Originally developed back in 1995, the language has slowly changed over

time. Yet its underlying purpose of being the “web browser language” didn’t change

until 2009, with the introduction of the Node.js runtime. Since then, the lines have

really begun to blur between frontend and backend development with JavaScript.

Additional tools have been written to help make JavaScript more robust, such as Type-

Script, which added types similar to those in Rust to JavaScript. 

Programming language rankings (2014–2022)
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 So, here we are presented with another pervasive language that has slowly evolved

(and, in some cases, devolved) over time and is lumped together with C++ and Python

in the world of code that can become unmanageable and would benefit from refactor-

ing. The difference is that instead of focusing on the backend code, we are going to

focus on the frontend and refactor JavaScript to have the memory safety, speed, and

type system that make Rust so robust.

 How do you know when to refactor your JavaScript to Rust? What use cases should

you be looking for? The answer is the same as for the decisions you would make for

migrating from Python to Rust or C++ to Rust: safety and speed. The difference is that

you will need to start thinking of the browser instead of the terminal (though Wasm can

be used on Node.js runtimes as well). JavaScript is not type safe and is prone to runtime

errors. Additionally, it can be slower than compiled programs. Wasm and Rust are also

more secure than JavaScript in the way they manage the application’s memory. So, con-

sider refactoring if you are looking for any of these improvements or if you have back-

end logic that can be moved to the frontend to reduce the backend workload.

 Developing a Wasm library for your site will typically follow the same process that

UI developers follow anyway, but instead of using JavaScript and HTML, you will use

Rust compiled to Wasm with HTML. In the future, you may develop whole compo-

nents in Rust. 

9.3 Rust in the browser

Most web components today are rendered on the client side using data transmitted

over HTTP. Data is most commonly transmitted by sending JSON-formatted messages

using a REST protocol. However, this is not the only way. In 1997, a data model known

as RDF was created to help organize metadata around arbitrary objects. This became

the foundation of RSS (RDF Site Summary) feeds, providing a passive way of notifying

other systems of site updates. Tools are used to aggregate these various feeds and dis-

play them to users to read or save for later. 

 What we are going to build is a tool that takes an RSS feed (using RDF format) and

creates a component to list and provide details of articles that are newly published to

arXiv, an open-access repository of scientific papers. We will first write the method for

retrieving papers based on a searchable term, providing links to the actual paper.

Once this is written, we will export the function so it can be used in JavaScript and

place it as a web component. To start, let’s look at structuring the data and retrieving

search results.

9.3.1 Requesting data

Let’s first create a new Rust application by running the following commands.

cargo new papers --lib
cd papers

Listing 9.1 Creating a new project
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Open up the Cargo.toml and add the following libraries.

[package]
name = "papers"
version = "0.1.0"
edition = "2021"

[lib]
crate-type = ["cdylib"]
# See more keys and their definitions

➥at https://doc.rust-lang.org/cargo/reference/manifest.html

[dependencies]
reqwest = { version = "0.11", features = ["json"] }
serde = { version = "1.0", features = ["derive"] }
serde-wasm-bindgen = "0.5.0"
serde-xml-rs = "0.6.0"
wasm-bindgen = "0.2.87"

[dev-dependencies]
tokio-test = "*"

Now that we have a project, it’s helpful to define our structures. To do this, we should

first look at what an actual feed looks like.

<feed xmlns="http://www.w3.org/2005/Atom">
<link href="http://arxiv.org/api/query?search_query%3Dall%3Atype"
< linearrow /> rel="self" type="application/atom+xml"/>
<title type="html">

ArXiv Query: search_query=all:type
</title>
<id>http://arxiv.org/api/MPA5fUXeKVs0FQAFaOfw4Eh7V44</id>
<updated>2023-06-13T00:00:00-04:00</updated>
<opensearch:totalResults
xmlns:opensearch="http://a9.com/-/spec/opensearch/1.1/">

229748
</opensearch:totalResults>
<opensearch:startIndex
xmlns:opensearch="http://a9.com/-/spec/opensearch/1.1/">

0
</opensearch:startIndex>
<opensearch:itemsPerPage
xmlns:opensearch="http://a9.com/-/spec/opensearch/1.1/">

10
</opensearch:itemsPerPage>
<entry>

<id>http://arxiv.org/abs/cs/0507037v1</id>

Listing 9.2  Cargo.toml: Dependencies for our library

Listing 9.3 arXiv: Example message from the service we are calling

Reqwest is a library 
for making HTTP calls.

Serde is the main 
encoding/decoding library 
for our various calls.

Wasm bindgen allows us 
to convert JSON objects 
from JsValue to a struct.

XML-parsing
library

Converts Rust 
code to Wasm

Used in 
async testing
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<updated>2005-07-14T08:58:31Z</updated>
<published>2005-07-14T08:58:31Z</published>
<title>Type Inference for Guarded Recursive Data Types</title>
<summary> ... </summary>
<author>

<name>Peter J. Stuckey</name>
</author>
<author>

<name>Martin Sulzmann</name>
</author>
<link href="http://arxiv.org/abs/cs/0507037v1"

rel="alternate"
type="text/html"/>

<link title="pdf" href="http://arxiv.org/pdf/cs/0507037v1"
rel="related"
type="application/pdf"/>

<arxiv:primary_category
xmlns:arxiv="http://arxiv.org/schemas/atom"
term="cs.PL"
scheme="http://arxiv.org/schemas/atom"/>

<category term="cs.PL" scheme="http://arxiv.org/schemas/atom"/>
<category term="cs.LO" scheme="http://arxiv.org/schemas/atom"/>

</entry>
</feed>

From this, we can see the root of the file is the feed tag, with each result being an

entry. The details we want from an entry are a list of authors, an ID, a title, and a sum-

mary of when it was updated and when it was published. Given these fields, we can

derive the following structures. 

#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct Feed {

pub entry: Vec<Entry>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct Entry {

pub id: String,
pub updated: String,
pub published: String,
pub title: String,
pub summary: String,
pub author: Vec<Author>,

}

#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct Author {

pub name: String,
}

Given this structure, we can then create a function that retrieves paginated search

results (paginated refers to data that is chunked by size and starting location). To do this,

Listing 9.4  lib.rs: Defining our basic structures for searching

A list of entries to be displayed and wrapped in 
a parent structure similar to the previous XML
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we will use the reqwest library (which has Wasm support) to retrieve our results. We will

take those results and convert them from XML to JSON for our component. Using their

RDF API, we can pass search queries as well as pagination data (start and max results).

All of this functionality will be put into our library. Let’s write the function now. 

async fn search(term: String, page: isize, max_results: isize) ->
Result<Feed, reqwest::Error> {
let http_response = reqwest::get(

format!("http://export.arxiv.org/api/query?search_query=
all:{}&start={}&max_results={}",
term, page * max_results, max_results)).await?;

let b = http_response.text().await?;
let feed: Feed = serde_xml_rs::from_str(b.as_str()).unwrap();
return Ok(feed)

}

Finally, we can write a test to verify that this is working as expected.

#[cfg(test)]
mod tests {

use super::*;
macro_rules! aw {

($e:expr) => {
tokio_test::block_on($e)

};
}

#[test]
fn test_search() {

let res = aw!(search("type".to_string(), 0, 10)).unwrap();
assert_eq!(res.entry.len(), 10);
print!("{:?}", res)

}
}

NOTE Blocking is when a system waits until a result is returned, as opposed to
asynchronous calls, which switch to another process while waiting.

This is a pretty simple function that we can use to take advantage of Rust’s asynchro-

nous abilities and powerful parsing libraries. This method will be central to the com-

ponents we build in this chapter and the tools we build in the next. While the method

is simple, it can be used in a multitude of ways, making it ideal to demonstrate the

powers of Wasm’s portability. 

9.3.2 Compiling to Wasm

Now that we have a function that performs the search functionality we want, we can

see what it looks like in the web browser. To do that, we need to compile it to Wasm

Listing 9.5  lib.rs: Fetching and parsing the results for searching papers

Listing 9.6  lib.rs: Adding unit tests for our search

Calls the export 
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Saves 
the text 
responseConverts to a

Feed struct

Macro that allows for blocking 
within the async test

Uses the macro to block
until you receive a response

and verify the results
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and use the JavaScript loading function. This is pretty straightforward once we have

defined the function that we wish to export. There are a few different ways we can

define our function, but to allow for a smaller interface, we are going to pass in a

JSON object. Let’s define that now. 

#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct Search {

pub term: String,
pub page: isize,
pub limit: isize,

}

Next, we need to define the function that the Wasm binding can generate to pass the

JSON object. To do this, we will use a macro defined by the wasm_bindgen library. We

will pass a special JsValue to the function and return a similar object. This function

will also be asynchronous, meaning that it will return a JavaScript promise that needs

to resolve before the data is returned. 

#[wasm_bindgen]
pub async fn paper_search(val: JsValue) -> JsValue{

let term: Search= serde_wasm_bindgen::from_value(val).unwrap();
let resp = search(term.term, term.page, term.limit).await.unwrap();
serde_wasm_bindgen::to_value(&resp).unwrap()

}

Within this function, you see we are converting our JsValue into a Search struct. This

is done by a special serde library. When a result is received from our search function,

the values are then re-encoded to JSON and returned. That was all we needed! Now

we can compile to Wasm using the following command. 

cargo install wasm-pack
wasm-pack build --target web

If you look in the output directory pkg, you will see that a special npm library was

instantiated and is ready to use. If you open the papers.js file, you can see a bunch of

bootstrapped code to help load the Wasm module. Similarly, if you open the file

Listing 9.7  lib.rs: Defining the object as a JSON object

Listing 9.8  lib.rs: Creating the search function

Listing 9.9 Console: Building and compiling to Wasm for the web
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papers.d.ts, you can see the expected types and functions exported by this package.

Next is verifying that this function works in JavaScript. 

9.3.3 Loading Wasm in the browser

Now that we have a search function, let’s see how it works in the browser. Before we

add this code to our more sophisticated JavaScript component, let’s first make sure it

works through raw JavaScript. We’ll create a lightweight HTML page, load the Wasm

directly, provide it with a search element, and display the content as a list. To do this,

we’ll create a simple index.html file. 

<!DOCTYPE html>
<html lang="en-US">

<head>
<meta charset="utf-8" />
<title>Feed example</title>

</head>
<body>

<div id="listContainer">
<ul id="list"></ul>

</div>
<script type="module">

import init, { paper_search } from "./pkg/papers.js";
init().then(() => {

var list = document.getElementById('list');
paper_search({"term":"type", "page": 0, "limit": 10}).then(
(result)=>{

result.entry.forEach((r)=> {

var a = document.createElement('a');
a.target = '_blank';
a.href = r.id;
a.innerText = r.title;
var li = document.createElement('li')
li.appendChild(a)
list.appendChild(li)

})
},
(error)=>console.error(error))

});
</script>

</body>
</html>

As you can see, we are using old-school JavaScript here to build our page. We have

avoided the modern frameworks that many applications currently use to run Java-

Script, but the code provides a great example of how to incorporate this function as a

regular JavaScript library. Hopefully, this can start you thinking about some pesky

JavaScript functions you are using internally that could be rewritten in Rust and

Listing 9.10  index.html: Calling the Wasm library from JavaScript
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loaded in this way. Raw JavaScript functions like this can be used almost anywhere,

making this the first step toward refactoring. While this functionality is highly porta-

ble, it does not always fit into a larger JavaScript project. To do this, we can use a mod-

ern component library like React. 

9.4 Creating a React component

Component-based development has been around since the inception of software engi-

neering back in 1968. The concept is simple: separate concerns within a software sys-

tem by building isolated packages, services, resources, or modules that have similar

functions or data. Today, many languages, such as JavaScript, have frameworks or

libraries that aid in creating components. One of the most popular of these is React. 

 React has been around for more than a decade and has changed the way people

develop UIs. It has established itself as a great component-building tool and is all over

the web. Other libraries, such as Vue.js, have become popular over the past couple of

years, so the example we are about to write may be different for one of these other

libraries.

 To start, we are going to create a new web application using a tool called Vite. Vite

is one of many modern JavaScript frameworks that provides tooling to bootstrap web

applications. We will use it to bootstrap a new JavaScript app using the React compo-

nent library. This will give us the minimum pieces needed to experiment with Wasm.

First, you need to have npm installed, which can be done by following the setup

instructions at npm Docs: https://mng.bz/eBMw.

 Let’s get started by opening up a terminal within your papers project and typing

the following.

npm create vite@latest

Need to install the following packages:
create-vite@latest

Ok to proceed? (y) y
✓ Project name: … papers-list
✓ Select a framework: › React
✓ Select a variant: › JavaScript

This will create our base application. Before we go any further, we need to change

how our Wasm is being created. Right now, we have it set to be built using the web flag,

which gives us a loader that must be called for the Wasm library to be used. We are

instead going to use the bundler option, which takes our code and puts it in a module

that can be easily imported and used within our JavaScript package. 

 Since JavaScript has been around for a while, there are different ways of building

JavaScript code. Originally, JavaScript was built by loading multiple scripts via the

browser, which required each page to track the libraries it was using and how they

interacted. We did this in our earlier example using the script tag. Over the years,

many libraries have been written in a modular format where a tool similar to a

Listing 9.11 Console: Creating a new React app

https://mng.bz/eBMw
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compiler takes all libraries and code written and assembles them into a single execut-

able script. This compiler-like tool is called a bundler since it bundles the scripts

together. This treats the code more as a library and less as a script. So, since we want to

use our code as a library within our component, we are going to use the bundler flag

when compiling our Wasm. 

 To use the bundler flag, we need to do the following. 

wasm-pack build --target bundler
cd pkg
npm link
cd ../papers-list

Next, we will want to edit our package.json file to add our Wasm library as a relative

import to our project. Add the following code under dependencies. 

"dependencies": {
"papers": "file:../pkg",
...

}

Then, add the following libraries and run the install.

npm install vite-plugin-wasm vite-plugin-top-level-await --save-dev
npm link papers
npm install

Finally, there is one last configuration step before we can write our component. Open

up vite.config.js and add the necessary Wasm modules.

import { defineConfig } from 'vite'
import react from '@vitejs/plugin-react'
import wasm from "vite-plugin-wasm";
import topLevelAwait from "vite-plugin-top-level-await";

// https://vitejs.dev/config/
export default defineConfig({

plugins: [
react(),
wasm(),
topLevelAwait()
],

})

Listing 9.12 Console: Bundling the library

Listing 9.13 package.json: Adding local dependency

Listing 9.14 Console: Linking our Wasm library and compiling

Listing 9.15 vite.config.js: Configuring our app to use Wasm
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Now, let’s create that component. It’s helpful to first create a component with static

data so you can get the feel of it and make sure it works. Additionally, it provides a

template that can easily be updated with variables. We are going to create a compo-

nent called List. So, in the src folder, create a new file called List.jsx and add the

following. 

import React, { useEffect, useState } from 'react'
const List = () => {

const [entries, setEntries] = useState([{id:"abc", title:"title"}])
const [page, setPage] = useState(0)

return (
<>
<ul>

{entries?.map((v, i) => {
return <li key={i}>

<a href={`${v.id}`} target='_blank'>{v.title}</a>
</li>

})}
</ul>
<button onClick={() => setPage((page) => page + 1)}>More</button>
</>

)
}
export default List;

Now, in a terminal window, type npm start dev and open a browser window to the host

and port listed in the terminal. Hopefully, you see a link render. Let’s add the Wasm

file. Something to remember here is that our application needs to fetch and load the

file. To do that, we need to add an import statement, which creates a JavaScript future

that needs to be resolved before using the library. So, outside of the List component,

we need to add an import statement. 

import React, { useEffect, useState } from 'react'

const wasm = await import('papers')

You’ll notice that we have a page variable that is incremented as we click the More but-

ton. When this variable is changed, we want React to update the state of our compo-

nent based on this effect. We will create a useEffect hook to do this. 

const List = () => {
const [entries, setEntries] = useState([])

Listing 9.16 List.jsx: Creating a component with static data

Listing 9.17 List.jsx: Importing the Wasm library

Listing 9.18 List.jsx: Using Wasm to fetch papers

The state
management for

our list of papers

The state 
management for 
the page count

Goes through the list of entries 
and renders a link for each

Uses a button to
increase the page count

Creates an empty 
list at the onset
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const [page, setPage] = useState(0)
useEffect(() => {

if(wasm){
wasm.paper_search({"term":"type",

"page": page, "limit": 10}).then(
(result)=>setEntries(result.entry),
(error)=>console.error(error))

}
}, [page])
...

}

Save and watch the page reload. Now you should see some articles come across. When

you click the More button, you should see the page update! We have fully integrated

our Rust code into a JavaScript application with just a little configuration. Because of

this marriage between Rust and JavaScript through Wasm, some tools have emerged

to help with component creation that allow you to write your React component in

Rust. Let’s take a look at what that looks like. 

9.5 Web components entirely in Rust

Yew is a library designed to create web UI components that compile into Wasm. Yew’s

intent is to bring all of Rust’s safety goodness to web applications. Since most develop-

ment patterns have migrated away from a server-side rendering model to a client-side

model, most languages aren’t able to bridge this gap from backend code to frontend

code because most frontend code is done in JavaScript. With the introduction of

Wasm, this is no longer true. Now, whole component frameworks are being written

that act like those in React but are written in Rust. 

 The Yew library will help us create a component similar to the one we created in

React; the major difference is in how we handle our components’ states and actions.

Our states will be Fetching, Success, and Failure, while our actions will be

IncrementPage, SetFeedState, and GetSearch. Yew components then need to have

three methods: create, update, and view. create and update are used to set the ini-

tial state and mutate the state, respectively, while view uses that state to render the

component. This comes from the classic Model-View-Controller structure where a

model holds the state, the controller controls the actions, and the view renders based

on the state. 

 First, we should add Yew to our Cargo.toml.

[dependencies]
...
yew = "0.19.0"

Let’s get started by creating our enums for our actions and state.

Listing 9.19 Cargo.toml: Adding a Yew component library

An update watcher to the component so 
it knows to rerender when data changes

Calls search
function, passing

the page and limit

Sets entries from 
the search result

Displays an error 
if an error occurs

Watches and updates when 
the page variable changes
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use yew::prelude::*;

...

pub enum Msg {
IncrementPage,
SetFeedState(FetchState<Feed>),
GetSearch(isize),

}

pub enum FetchState<T> {
Fetching,
Success(T),
Failed(reqwest::Error),

}

Our component itself must hold some sort of state. In this case, it will be the Fetch

state, as well as what page we are currently on. The List structure will look like the fol-

lowing. 

pub struct List {
page: isize,
feed: FetchState<Feed>,

}

Now, we need to implement the component type for our List. Here, we will define

two values that will be used to help us render the component. Those are Messages and

Properties. Messages are the type of actions that can occur on an update, whereas

Properties can be values that will be monitored by Yew for updates. We provide a

base struct List, which houses the properties of the basic values we want to use within

the component. The Component implementation then requires us to implement func-

tions to help the component render. We will not be using Properties in this example,

but you can find more information about their use at www.yew.rs. Instead, we will be

using this base structure List, which has a feed and current page. We also need to

implement three methods: create, update, and view. So, let’s create the basic skele-

ton, and then we will fill in the methods. 

impl Component for List {
type Message = Msg;
type Properties = ();

Listing 9.20 lib.rs: Creating enums for various states

Listing 9.21 lib.rs: Creating the initial state struct

Listing 9.22 lib.rs: Basic component outline

Imports Yew 
package

Defines possible 
message types
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Sets properties 
to None
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fn create(ctx: &Context<Self>) -> Self {
}

fn update(&mut self, ctx: &Context<Self>, msg: Self::Message) -> bool {
}

fn view(&self, ctx: &Context<Self>) -> Html {
}

}

Let’s first understand the flow of the component. We will start with an initial state

established by the create method, which will also begin the search process with the

page being 0. This causes the View stage to render in the Fetching mode, which will

display a loading message. Any state change internally is managed by the update

methods, which then will trigger changes to the view. A view can include a button that

triggers an event and is handled by the update. A high-level map of what is going on

can be seen in figure 9.3. 

Figure 9.3 Component flow

We are going to start by creating the view and working backward to the update and ini-

tialization (create) phases. This will help us understand the different views we want

and what actions will drive those changes. With this view, we will need to match the

various states we established in our FetchState enum. Each state will then render

HTML using a macro. 

impl Component for List {
...

Listing 9.23 lib.rs: Implementing the view
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fn view(&self, ctx: &Context<Self>) -> Html {
match &self.feed {

FetchState::Fetching => html! { "Fetching" },
FetchState::Success(data) => html! {

<div>
<ul>

{ for data.entry.iter().map(|e| html!{
<li>

<a target="_blank" href={e.id.to_string()}>
{e.title.to_string()}</a>

</li>
})}

</ul>
<button class="button" onclick={ctx.link().callback(

|_| Msg::IncrementPage)}>
{ "More" }

</button>

</div>
},
FetchState::Failed(err) => html! { err },

}
}

}

While fetching, we will let the user know we are fetching. Similarly, we display any

errors we receive. These states are pretty self-explanatory and simple but are essential

in keeping our customers informed about what is going on. When we receive data, we

do something similar to what our React component does: iterate through the results

and create a link with a button that calls an action to update the page state. The ctx

variable gives us the ability to tap into the state management system that accepts a

message and calls our update function to mutate the state. 

 With this in mind, we can now see the various mutations our system can undergo.

One method will help us set the state, while the other two manipulate the state and

request an additional update.

impl Component for List {
...
fn update(&mut self, ctx: &Context<Self>, msg: Self::Message)

➥-> bool {
match msg {

Msg::SetFeedState(fetch_state) => {
self.feed = fetch_state;
true

}
Msg::IncrementPage => {

self.page += 1;

Listing 9.24 lib.rs: Implementing the update functions

The view function is required
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SetFeed will mutate the state 
of the component by setting 
the current feed state.

True is returned so 
the component will 
rerender since the 
state has changed.
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ctx.link().send_message(Msg::GetSearch(self.page));
false

}
Msg::GetSearch(page) => {

ctx.link().send_future(async move {
match search("type".to_string(), page, 10).await {

Ok(data) => Msg::SetFeedState(
FetchState::Success(data)),

Err(err) => Msg::SetFeedState(
FetchState::Failed(err)),

}
});
ctx.link().send_message(Msg::SetFeedState(

FetchState::Fetching));
true

}
}

}
...

}

You’ll notice that this method returns a Boolean. This is used by the component to

determine if it should rerender, which should only occur when the state has changed.

So, in the first method, we just assign the state, nothing special. This will, in turn, trig-

ger the view to update based on the state. The second method mutates the page state

but then sends a message to call the GetSearch function. This could be controlled

using properties, but instead, we want to demonstrate how to call updates from other

updates along with returning a false so the view does not update. GetSearch is the

main method that we will use to call our original feed retrieval. This call is wrapped in

an async method, meaning we need to provide a closure to run when it resolves.

Once resolved, the state will be updated, providing either our data or an error mes-

sage. While this is happening, we set the state to fetching so the user understands what

is happening. 

 Hopefully, at this point, you are seeing how this whole component flows from the

view state and the ways to affect the view. To review, we have a function that defines

how the component looks based on a given state; this is the view. Changing the state in

the update function happens through an external trigger. This, in turn, affects the

state, causing the view to be run, changing the appearance. The final piece we need is

to set up the initial state of the component when it is created. This will do two essen-

tial tasks: create the initial struct and set off the initial fetch request.

impl Component for List {
...
fn create(ctx: &Context<Self>) -> Self {

Listing 9.25 lib.rs: Implementing the initial state

IncrementPage will increment the page count
and send a new message to the search.
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ctx.link().send_message(Msg::GetSearch(0));
Self {

page: 0,
feed: FetchState::Fetching,

}
}

...
}

That’s it! The component is done, but we still have one final method to add to expose

this to our Wasm module.

#[wasm_bindgen]
pub fn list_component() -> Result<(), JsValue> {

yew::start_app::<List>();
Ok(())

}

After doing this, we can rebuild our Wasm module.

wasm-pack build --target bundler
cd pkg
npm link
cd ../papers-list
npm link papers
npm install

Open up our App.jsx file and change the code to the following.

import './App.css'

const wasm = await import('papers')

function App() {

return (<div>
<div>{wasm.list_component()}</div>

</div>
)

}

That’s it! Start up your dev server and see how this works just like our React

component. 

Listing 9.26 lib.rs: Creating the component function

Listing 9.27 Console: Building and updating the library

Listing 9.28  App.jsx: Mounting the Wasm component
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Just call the component method, 
and Yew should do the rest!
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9.6 Refactoring JavaScript revisited

To review, we were able to use a Rust library to help us create an async method to

retrieve and paginate through an RDF document. We then added this to the web

browser and used it as a Rust library for a data provider as well as a component. Rust

provides us with a level of safety and code quality checks out of the box that JavaScript

requires many tools to handle equally well. 

 When you consider the evolution of the various projects we completed here, it

might be difficult to figure out where in the process you may be and what sort of solu-

tion you might need. The first use case appears where you have an algorithm or pro-

cess that you have written in Rust or have rewritten in Rust to run within the browser

as a script. This is the classic JavaScript or web model, where it is the job of the web

page to make sure that scripts are loaded for other scripts to use, and the context is

therefore loaded for only that page. The second scenario is exporting your Rust code

as a module or library that can be imported into other JavaScript projects, such as a

React component. This is a modern approach and the most likely scenario for devel-

opers to use. Modules are the way most large JavaScript projects are managed, and

integrating Wasm modules will be a larger extension to this pattern in the future.

 Finally, there is a whole web component being developed in Rust. This technology

is still in its infancy, and it is thus difficult to determine the growth trajectory of this

pattern. Nonetheless, the option of developing a web component in Rust is extremely

useful for scenarios where developing a product using only one language or a limited

number of languages is appealing. Table 9.1 outlines these various use cases and pat-

terns.

Now that we have Rust producing a Wasm module used on the frontend, we can look

at how we can use Wasm on the backend for a much larger refactor pattern.

Summary

 Wasm is a universal language that can be run in most web browsers.

 Wasm can be written in Rust to be used in raw JavaScript via a --web flag when

using wasm-pack.

 Wasm can be used to write JavaScript libraries that can be imported into large

web applications written in Rust by using the bundler option when compiling

using wasm-pack.

Table 9.1 Wasm frontend use cases

Use case Format Tool

Simple web page Script wasm-pack web

Library integration Module wasm-pack bundler

UI element Component Yew
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 Wasm can be used within components by loading the exported module, allow-

ing for more portable code, and integrating into modern frameworks and

libraries.

 Full web components can be written in Wasm and Rust using Yew. 
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WebAssembly interface
for refactoring

Java was released as a programming language in 1995 with the bold slogan “Write

Once Run Anywhere” (WORA). The concept of writing code that can run any-

where was not new; it had been done before in other languages like Smalltalk, and

today it seems mildly unremarkable given the extensive package managers, inter-

preted languages, and sophisticated compilers available to developers. But what

Java did was truly amazing. In the course of a few years, it became one of the most

adopted languages; it remained so for two decades and nearly succeeded in insert-

ing itself into every possible piece of software, including the web browser.

NOTE Java was at one point so popular that it influenced the name of an
up-and-coming web language known now as JavaScript, even though the
two are completely unrelated.

This chapter covers 

 Writing a WebAssembly (Wasm) module to run in a 

virtual runtime

 Integrating a Wasm module into a Rust 

executable for output

 Using Wasm memory for non-numerical data
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When Sun Microsystems developed Java, it had an eye on the newly emerging World

Wide Web. Sun realized that there was a lot of potential for growth in that area, along

with the presence of new hardware like cell phones. Internally, Sun was having prob-

lems with C and C++ running on their custom hardware and decided to create a lan-

guage with its own virtual machine (VM), which can interpret a custom assembly

language known as assembly code. The VM translates assembly code into the host’s byte-

code to execute applications on almost any device that the VM supports. 

 Developing in Java allowed the developer to write an application that would be

compiled into a module known as a JAR (Java ARchive), which is a zip file that con-

tains Java bytecode grouped into classes, as shown in figure 10.1. This archive could

then be shipped to another machine and executed or used as a library. The files could

be executed as long as the runtime Java Runtime Environment (JRE) was present on

the machine. The JRE could even run in your browser as a little application known as

an Applet. 

Figure 10.1 Languages compiled into a JAR and the ability to run in multiple locations

Java is still pervasive in the industry and is still one of the most prolific programming

languages ever developed. Java blazed a trail for many development practices we use

today. Notably, the important notion of being able to write code and run it anywhere

remains. Java was able to create a new platform for others to develop on as well. Scala,

Clojure, Kotlin, and several other languages all compile to Java bytecode and can run

wherever a JRE is present.
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    bytecode and are packaged in an
    executable file known as a JAR.
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    Java bytecode.
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    on a CPU or in a browser. The
    JAR can also be used as a library.
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 The history of Java can give us a glimpse into the future of WebAssembly (Wasm).

In the previous chapter, we looked at using Rust to write JavaScript code, but the pro-

cess was really an introduction to a much larger opportunity to write code that runs

anywhere in whatever language you’d like.

 Every chapter in this book has demonstrated Rust’s power to integrate into other

languages such as Python, C++, and JavaScript, but this is only the tip of the iceberg.

While the interoperability between Rust and various C-based languages is vast and

impressive, the world of Wasm has made Rust one of the core languages for more

extensive interoperability. Rust did this by creating WebAssembly modules, which are

libraries or executables that are neatly packaged to be used by compatible Wasm run-

times or libraries, much like the JAR in Java.

 In 2019, Mozilla announced an initiative known as the WebAssembly System Inter-

face, or WASI. The initiative essentially lifted Wasm out of the browser and into virtu-

ally every runtime and language as long as there was a supporting library or binary.

Like the Java JVM, WASI establishes a set of protocols that allow the assembly lan-

guage to interact with the underlying system. This set of protocols is known as an appli-

cation binary interface, or ABI, where two binary modules can interact via machine or

assembly code. These protocols are very low-level compared to higher-level APIs. 

 So, what you have is a WebAssembly module that can run in a web browser or on

the command line with the addition of one runtime binary or a module that can be

imported and run by any supporting language. The power of this type of flexibility

can be seen through the lens of how we use containers in development today.

 Many are seeing Wasm + WASI as the next step in creating universally running

applications. Some developers are moving to containers as a way of bundling their

applications to run anywhere. However, Wasm and WASI are providing an alternative

to help gradually migrate legacy systems by allowing developers to create their own

runtime to embed old business logic or slower-performing code (figure 10.2).

 Consider the current trend of writing applications in the form of functions as a ser-

vice. Here again, a common runtime and target are created for a given language, and

the code is loaded into a temporary container. The temporary container runs on an

abstraction above the underlying operating system. In this scenario, the hosting appli-

cation that executes your function constrains the container runtime to only execute

in a predefined way. The limited API that these services provide for you typically

requires a single entry point that needs to be implemented. The code is provided in

raw form to the hosting system, and the system compiles it and mounts it in a con-

tainer runtime. The host system then attempts to call the function based on the lan-

guage and other configuration data required by the provider.

 As we will see, Wasm requires us to define an interface. This interface will be used

to allow clients to call specific functions within our runtime. Instead of a runtime like

the JRE or a container runtime, we will have the ability to define the interfaces and

how we interact with the underlying system. You can provide the scope necessary to

make your system as flexible as you want, allowing anyone to create an API-like appli-

cation, or as constrained as you want to cordon off a segment of legacy code. You get

CHAPTER 10 WebAssembly interface for refactoring
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to choose the language for the Wasm runtime, and your users can choose to write the

code in whatever language they are comfortable using.

Figure 10.2 Container runtimes are similar to VMs.

NOTE For an up-to-date list of supported languages, check out this link:
https://github.com/appcypher/awesome-wasm-langs.

To underline this point, Solomon Hykes, one of the creators of Docker, tweeted in

2019,

If Wasm+WASI existed in 2008, we wouldn’t have needed to create Docker. That’s how
important it is. Web assembly on the server is the future of computing. A standardized
system interface was the missing link. Let’s hope WASI is up to the task!

Having a universal runtime is a problem that developers have been trying to tackle

through various forms of technology, but Wasm seems to be the answer many have been

looking for; it is now at the forefront, and Rust is one of its most important languages.

10.1 WASI universal runtime

So, what exactly is WASI? Well, in chapter 9, we explored how Wasm works in the con-

text of a browser. WebAssembly code is in a compiled format that can be interpreted

by a web browser or any runtime that can interpret this compiled code. The runtime
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that can interpret the WebAssembly code will do so using the WebAssembly System

Interface, or WASI. Now, our code is liberated from the WebAssembly runtime within

a web browser using JavaScript. We can instead write an executable or a library that

can be used by any other language that supports WASI. WASI is the tool that allows us

to write our own runtime or use a runtime provided by someone else. The interface

understands the underlying WebAssembly code and interprets it just as the JRE does

with bytecode. In this case, WASI interprets Wasm code just like the JRE interprets

Java bytecode. The difference is that we will get to write our own VM, just like the JVM. 

 WASI allows a developer to define how external libraries will interact with the

underlying code that the host provides. The I in WASI stands for interface, and that’s

what the developer will be defining for the host code they are writing. In software, we

define interfaces but don’t necessarily need to create an implementation. In the same

way, the host is providing a way to interact with an external library or application with-

out knowing how the library works. When we define our interface with a set of given

parameters and outputs, we can implement other code to call it. In this fashion, a

library can be written in Wasm that fulfills an interface defined by the host applica-

tion. The library can then be swapped out without affecting the host application. We

will be demonstrating this ability throughout the chapter. Additionally, the Wasm

modules can be swapped out without stopping the host application. The creation of

the interface allows us to execute anything as long as it implements that interface, as

shown in figure 10.3.

Figure 10.3 Wasm running in the WASI runtime
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Executing arbitrary code within another piece of code can be dangerous. For years, we

have been trying to prevent cross-site scripting attacks or SQL injection by limiting what

users can input into various forms and fields. So, the idea of creating a runtime where

any arbitrary Wasm file can be run seems dubious. However, a safety mechanism is built

into the Wasm standard to prevent attacks from happening. Wasm modules are run in

a sandboxed environment that receives input in only two forms: as direct argument

inputs (like input for command-line functions) or through a memory buffer allocated

solely within the external module’s sandboxed environment. The host must ask the

module to manage memory in some capacity and provide functions to read from this

memory. Like containers, the JVM, and other virtual runtimes, the module runs as if it

were the only application in the universe, with no concept of what lies outside of it.

Because of this added security, we can execute Wasm files with little fear of the applica-

tion doing anything malicious without the calling service explicitly permitting it.

 The goal of Wasm is to allow code to become portable and modular. As a devel-

oper, you typically want to write code in the language you are comfortable with and

use libraries that are helpful to you. Yet other languages have advantages in particular

areas or libraries that you just don’t have access to. As an example, take Python, which

is very easy to write and a great language for machine learning. Yet Python is a script-

ing language and, as we saw in chapter 7, can be improved by replacing Python code

with a module written in C++ or Rust. Yet we don’t need to be limited to just those lan-

guages with the advent of WASI. Now we can share a function that was written in Go to

do some performant operation without changing our underlying Python code.

 Similarly, a Rust or C++ developer may want to use code from Python or a Go tool

and make sure that the code is secure. We can use Rust’s safety and Wasm’s sandboxed

environment to isolate and execute the insecure code in a locked-down environment.

With Rust’s extensive support of WebAssembly, we can get the “ultimate refactoring”

with Rust. Since Rust has all of the tooling for Wasm and WASI support, we can refac-

tor parts of our system and consume it in Rust, or we can rewrite our code in Rust and

compile it to Wasm and have another language run it. Let’s see how this works.

 Let’s look at WASI in terms of a VM. WASI provides the interface that allows another

application to consume a Wasm module, much like we may install a binary within a con-

tainerized framework such as Docker. The underlying container may have a base image

that provides the running application with resources like a filesystem, utilities, and even

libraries. WASI can do the same thing. Let’s take a look at WasmEdge as an example of

a WebAssembly runtime that also provides us with some libraries to use in development.

 WasmEdge is supported by the CNCF (Cloud Native Computing Foundation) to

help create a standard runtime for WebAssembly code as well as an SDK. We are going

to be using WasmEdge to help us with much of the boilerplate and low-level Wasm

tooling that, as developers, we should not need to worry too much about. The caveat

is that whatever we do in this example can be implemented with raw WebAssembly

tools. If your application requires fewer abstractions, you may need to look into the

WASI specifications more closely. 
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 WasmEdge provides SDKs for Rust, JavaScript, Go, C, C++, Java, and several other

languages, so it is a great choice for our refactoring needs for this book. The Wasm-

Edge project is growing, as is the whole Wasm ecosystem, so it is important to stay up

to date with the changing landscape. To get started with WasmEdge, we are going to

install the library using the following command for Linux (or find your supporting

OS at https://wasmedge.org/docs/start/install).

curl -sSf https://raw.githubusercontent.com/WasmEdge/WasmEdge/master/

➥utils/install.sh | bash

Once WasmEdge is installed, you will have access to the WasmEdge runtime as well as

some of its tooling. Follow any onscreen instructions to complete the setup. We will

verify that the code is working by running a prebuilt Wasm module. To test it out, let’s

download the Wasm file and run it.

wget https://github.com/second-state/rust-examples/releases/latest/

➥download/hello.wasm

You should see “Hello World!” printed on the screen. What happened? Earlier in the

chapter, we likened Wasm files to JARs in that they are compiled, prepackaged code

that can be executed on their respective runtimes without considering the underlying

system architecture (Windows, Linux, 64 bit, 32 bit). We can go to the Rust source

code for the module and see how it works, but we don’t need to worry about how it is

built or how it will be executed, since the runtime handles that for us. We can imagine

a similar situation by downloading and executing a JAR file for Java.

java -jar hello.jar

In the previous chapter, we used Wasm to run code within JavaScript in a web browser.

With the compile target destined to be consumed by JavaScript, we were provided

with some code to load the Wasm file into the browser runtime so we could execute

the logic and retrieve values from an API. In a similar way, we can create a host envi-

ronment outside of the browser to instead serve as a command-line utility. Let’s see

how we can break up our work to create an agnostic CLI tool that receives Wasm

libraries for the CLI tool’s business logic. 

10.2 From the browser to the machine

Let’s revisit our project from the last chapter. We decided to build a Wasm module

that would call an external API and parse the results to display within the web browser.

Listing 10.1 Command: Installing WasmEdge

Listing 10.2 Command: Testing WasmEdge

Listing 10.3 Command: Executing a JAR

https://wasmedge.org/docs/start/install
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Often, when you consume an API endpoint and translate the data into a format that

your business can use, you then have the power to extend it into other areas. If we take

this same concept and combine it with Wasm/WASI, we should be able to construct a

very portable and extensible system. 

 To start, we are going to create a new umbrella project called a workspace to house a

library and a binary. A workspace shares the same Cargo.lock file and output direc-

tory to help organize packages and keep related packages together. Let’s create our

new project. 

mkdir journal
cd journal

We will then create the library and the binary.

cargo new paper_search_lib --lib
cargo new paper_search
touch Cargo.toml

And we will add workspaces to the Cargo.toml file using the following contents. 

[workspace]

members = [
"paper_search",
"paper_search_lib"

]

Finally, we need to make sure we have our target, which will be wasm32-wasi, installed. 

rustup target add wasm32-wasi

Open the lib.rs file. We will add some of the same code from the previous chapter to

create our search function. First, we will add our structures. 

use serde::{Deserialize, Serialize};
use std::env;

Listing 10.4 Command: Creating a new project

Listing 10.5 Command: Creating a new binary and library

Listing 10.6 Cargo.toml: Workspace file

Listing 10.7 Command: Installing the target

Listing 10.8 paper_search_lib/src/lib.rs: Copying structures

Creates a library using the 
code from the last chapterCreates a new binary to 

consume the libraryCreates 
umbrella 
Cargo file

Members are the libraries you 
want Cargo to manage for you.
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use std::error::Error;
use std::fmt::{self, Debug, Display, Formatter};

#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct Feed {

pub entry: Vec<Entry>,

}

#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]

pub struct Entry {
pub id: String,
pub updated: String,

pub published: String,
pub title: String,
pub summary: String,

pub author: Vec<Author>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct Author {

pub name: String,

}

This code provides the XML structure for the returned items. Then we will copy over

our search function.

pub async fn search(term: String, page: isize, max_results: isize) -

> Result<Feed, reqwest::Error> {

let http_response = reqwest::get(format!(

"http://export.arxiv.org/api/

query?search_query=all:{}&start={}&max_results={}",

term,

page * max_results,

max_results

))

.await?;

let b = http_response.text().await?;

let feed: Feed = serde_xml_rs::from_str(b.as_str()).unwrap();

return Ok(feed);

}

With the code in place, we then need to add the dependencies by opening the file

paper_search_lib/Cargo.toml and adding the following libraries. 

[package]
name = "paper_search_lib"
version = "0.1.0"
edition = "2021"

Listing 10.9 paper_search_lib/src/lib.rs: Copying our search function

Listing 10.10 paper_search_lib/Cargo.toml: Library dependencies
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[dependencies]
tokio_wasi = { version = "1.21", features = ["rt", "macros", "net", "time"]}
reqwest_wasi = "0.11"
serde = { version = "1.0", features = ["derive"] }
serde-xml-rs = "0.6.0"

That created the library, which our module will then call. It is important to pay atten-

tion to how you isolate and separate various segments of work to make sure they don’t

conflict and that the business logic does not get buried in the application logic. Since

a Wasm module is a shippable binary, we want to move toward making the binary inde-

pendent. Our module will be compiled in Wasm format but will depend on some

libraries from the WasmEdge runtime.

 Let’s see if we can make a simple executable Wasm file that we can run on

WasmEdge. We need to add some content to our paper_search/Cargo.toml file. 

[package]
name = "paper_search"
version = "0.1.0"
edition = "2021"

[build]
target="wasm32-wasi"

[target.wasm32-wasi]
runner = "wasmedge"

[dependencies]
tokio_wasi = { version = "1.21", features = ["rt", "macros", "net", "time"]}
paper_search_lib = { path = "../paper_search_lib" }

Now, we can write a binary that calls our library function and prints the results to the

standard output (which typically is the console). It will be compiled in Wasm, and we

can then run it through the WasmEdge runner we installed.

use std::error::Error;
use std::fmt::{self, Debug, Display, Formatter};

fn main() -> Result<(), Box<dyn std::error::Error>> {
let res: Vec<String> = search("rust".to_string(), 0, 10).unwrap();
for entry in res.iter() {

println!("{:?}", entry);
}
Ok(())

}

Listing 10.11 paper_search/Cargo.toml: Binary dependencies

Listing 10.12 paper_search/src/main.rs: Fetching search results

Always targets our 
build for Wasm

Specifically, we want our runner 
to be defined for WasmEdge. Imports the

functionality from
the last chapter

Retrieves search
results using the term

Prints results 
out to the screen
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We created a simple WebAssembly application that will be the basis for the rest of our

tool. This module will only expose the main function, which WasmEdge will call. The

paper_search module, in turn, will use the underlying business logic we wrote in the

paper_search_lib. Later, we will expose functions so this module can be used as a

library. Upon running the code, you will see the results printed to standard out. What

does standard out mean in terms of a module? The answer depends on the underlying

implementation. We don’t know exactly how WasmEdge handles those results. The

output is dependent on the underlying runtime, which for now will just be what

WasmEdge provides us with. Defining WasmEdge as our target runner tells Rust to

compile using some of the functions defined by the WasmEdge SDK, allowing for bet-

ter interoperability with the system. Essentially, WasmEdge fulfills the ABI we men-

tioned at the beginning of the chapter, and our module will have the implementation

of those interfaces. 

 We separated the search function so we can extend it later and use this module as

a library as well. Thus, it is best to make it accessible early on.

pub fn search(
term: String,
page: isize,
max_results: isize,

) -> Result<Vec<String>, Box<dyn std::error::Error>> {
let rt = tokio::runtime::Builder::new_current_thread()

.enable_all()

.build()

.unwrap();
let feed: paper_search_lib::Feed = rt.block_on(async {paper_search_lib::s
earch(term, page, max_results)

.await}).unwrap();
let res = feed

.entry

.into_iter()

.map(|e| format!("{} {}", e.title, e.id))

.collect::<Vec<String>>();
return Ok::<Vec<String>, Box<dyn std::error::Error>>(res);

}

Now that we have built an entry point to our module, we will be able to call it, but first,

we must compile the module to use the Wasm runtime. Then we can call the module

through WasmEdge.

cargo build --target wasm32-wasi
wasmedge target/wasm32-wasi/debug/paper_search.wasm

Listing 10.13 paper_search/src/main.rs: Wasm function to fetch results

Listing 10.14 Command: Building Wasm

We do not want to run
this async, so we are

going to block the call. To
do this, we need a thread.

We will wait on this thread until a response 
occurs. This requires us to use Tokio’s thread 
management to block for a response.

Formats the feed 
values to strings

Compiles to Wasm

Runs the Wasm file 
using WasmEdge
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You should see some data printed on the screen! Behind the scenes, the WasmEdge

binary mounts our Wasm module and calls the main function. That’s it. Think of it

almost as an interpreter like that used in Python, except the code is already compiled.

When we use the generic runtime, we have access to simple functionality like execut-

ing the module and printing results. WasmEdge has no clue about the code itself but

does know how to interact with our operating system. This VM-like structure allows for

portability, provided we have this binary on other systems. You could ship your Wasm

module to your phone or to a Windows or Mac, and it would all work.

 This example leaves a little to be desired, though. Right now, we don’t have a way

to interact with our module. Let’s fix that by passing arguments to the module. We

pass in arguments just like with any other application or binary---through an args list. 

use std::env;
use std::error::Error;
use std::fmt::{self, Debug, Display, Formatter};

fn main() -> Result<(), Box<dyn std::error::Error>> {
let mut args: Vec<String> = env::args().skip(1).collect();
args.reverse();
let term = args.pop().unwrap_or("rust".to_string());

let res: Vec<String> = search(term, 0, 10).unwrap();
for entry in res.iter() {

println!("{:?}", entry);
}
Ok(())

}

Again, this is a simple application but with a lot happening underneath. Here, again,

we find that WasmEdge provides us with tools to grab arguments as a string within the

env package. But here’s an interesting fact about Wasm: it doesn’t have a string type.

As we will see in the next section, Wasm has no concept of strings or characters as

primitives within the language; therefore, doing something as simple as passing a

string actually puts the work of implementing and handling this task on the runtime

binary itself. So WasmEdge gives you the string input for free if you run their binary,

but it will be something we will implement on our own later on. 

 Let’s see how passing the argument changes our results.

wasmedge target/wasm32-wasi/debug/paper_search.wasm test

What we’ve accomplished this far is the equivalent of writing a standalone application.

We accept input via arguments, and output is written to the console. What we’ve built

Listing 10.15 paper_search/src/main.rs: Wasm module

Listing 10.16 Command: Building Wasm

Captures input
arguments for a

search term;
otherwise,

defaults to rust

Retrieves search 
results using the 
term provided

Prints results out 
to the screen

Passes in an 
argument
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already is a pretty powerful tool. The WasmEdge binary provides additional options to

allow more interactions with the underlying system while being able to run any Wasm

module. But what if we wanted to use the module as a library instead of calling a

binary?

10.3 Wasm library

Let’s consider our search function again. Right now, we are executing the search mod-

ule as a binary, much like you would if you compiled a Rust application and ran it

through the main function. But let’s consider using WasmEdge to bypass main and

instead execute an exposed function within the library. By doing this, we move outside

of WasmEdge’s abilities to pass us string values and instead must rely on the supported

primitives Wasm provides. Let’s start by creating a function that just provides a static

search where we can provide a page and an offset value. We only need to pass in sup-

ported primitives and expose the function using the #[no_mangle] macro, which pre-

serves the name of the function for us to execute. 

use std::env;
use std::error::Error;
use std::fmt::{self, Debug, Display, Formatter};

fn main() -> Result<(), Box<dyn std::error::Error>> {
...

}

#[no_mangle]
pub fn static_search(

page: isize,
offset: isize,

) {

let res: Vec<String> = search("rust".to_string(), page, offset).unwrap();
for entry in res.iter() {

println!("{:?}", entry);
}

}

pub fn search(
term: String,
page: isize,
max_results: isize,

) -> Result<Vec<String>, Box<dyn std::error::Error>> {
...

}

As mentioned earlier, this exposes the library functions rather than the main function.

Later, we will see the work required for a VM to translate and insert a string into a

module. So far, WasmEdge has done that for us when we are executing a module like

Listing 10.17 paper_search/src/main.rs: Wasm library

Passes in i32/i64 bit 
integers for pagination

Iterates through responses 
and print results
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a binary. But now, we will instead bypass this functionality by using WasmEdge’s

--reactor flag, which allows us to call an individual function. At this point, Wasm-

Edge no longer provides you with the tools to translate your string into a format

your library can handle. We aren’t provided with a set of arguments passed into the

main application, but instead, we are interpreting values inserted into our function.

All of this is to say that we lose functionality when we call the function directly as

opposed to executing the module. So, we are left with a set of primitives supported by

Wasm:

 i32---32-bit integer

 i64---64-bit integer

 f32---32-bit float

 f64---64-bit float

 v128---128-bit vector of integer, floating-point data, or a single 128-bit type

Outside of the primitive types, the responsibility turns to the module and the runtime.

We are given the ability to create our own contracts between how we want our system

to run and the modules we choose to run on that system. So, if you expect a string or

JSON or whatever passed into your runtime, you need to write the library or mecha-

nism to handle this. Later on, we will explore how to add in memory management,

but first, we will discuss complex data to explain where our application will be moving

and why we are starting with a simple pagination process.

 WasmEdge allows us to call these libraries directly from our Wasm module,

although we lose our ability to use strings. Let’s compile and test our module’s new

library by running the following.

cargo build --target wasm32-wasi
wasmedge --reactor target/wasm32-wasi/debug/paper_search.wasm

➥static_search 0 1

You should see the same results as before, but now, you are calling the library directly

instead of the main entry point to the binary. So, now we know how to build a Wasm

file that functions both as a binary and a library. But how can we run it in Rust? While

we still have a hardcoded string in our code, we can begin to see where we will be able

to add flexibility to our system. We can define libraries that take arguments from a

runtime and are passed into an arbitrary library. We are going to move beyond using

an existing runtime and start writing our own. 

10.4 Consuming Wasm

Steve Klabnik’s talk “Rust, WebAssembly, and the Future of Serverless” (https://

mng.bz/X7Yl) begins by talking about runtimes, how overloaded the term runtime is,

and how misunderstood a concept it is within software development. Almost every

Listing 10.18 Command: Building Wasm

reactor allows us to call functions directly 
within a module and pass in arguments.

https://mng.bz/X7Yl
https://mng.bz/X7Yl
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language has a runtime unless the language is an assembly language. Even compiled

languages provide some sort of runtime to do simple tasks like memory management

or other low-level operations. A runtime is a piece of code that gets executed to help

run other code, whether that is an assembly language or another intermediate lan-

guage. In the case of our earlier examples, we used the WasmEdge runtime. In chapter

9, we used a JavaScript runtime in the browser. Yet with WASI, we have the ability to

start writing our own runtime and embedding Wasm files like in figure 10.4. Here is

where you get to change a refactoring story. 

 Most projects we have discussed in
this book have demonstrated how to put
Rust into another language, such as C or
Python, or how to call one of these other
languages from Rust. These methods are
very conservative and excellent ways to
refactor, but consider the power of writ-
ing our own runtime. Suddenly, we have
the ability to run whatever code we want
as long as it compiles to Wasm---meaning
that pesky business logic written in C
could be compiled into a Wasm module
and run within your Rust code, just as if it
were any other library. When you’ve
built the tools to support a flexible struc-
ture using Wasm, you can think of your
code as a platform rather than just a
node in a larger web.

 Considering the ability to embed external logic into a system you have built should
raise concerns around how coupled systems can become. Design and architecture
become important factors in how your system will utilize Wasm and the interfaces you
develop to determine how flexible or rigid you need your platform to be. Yet, integrat-
ing any external language or library into your code provides a certain level of cou-
pling and dependency management. In the previous examples of moving pesky C
code, we could refer to a previous chapter and include it as part of our build, which
would be tightly coupled. Embedding a Wasm file is also tightly coupled, but the mod-
ule is isolated and safe. Here, we can run a module in isolation rather than rebuilding
our system to consume the old and possibly insecure C code. The eventual goal will be
to consider how to move completely off a given library or language or determine how
the language can be adapted to your newer system.

 If you find that you’ve established a common pattern that a singular runtime could
support, you have found the ability to port or use any language within your company,
merging C, C++, and Go, to run on a single Rust Wasm runtime. Or consider writing
your runtime in any of those languages and using Rust to write a module! Rust can
then be used in any other Wasm runtime provided it fulfills the proper interfaces.
Describing how the runtime works and developing code supported by the runtime is

VM
The virtual machine is built with an
interface to interact with a Wasm
file. Once the Wasm is implemented
and mounted, the virtual machine
can run the underlying Wasm app.

Wasm

Figure 10.4 Wasm running with SDK
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very abstract, so an example will help us demonstrate these concepts. We are going to
write our own runtime in the form of a CLI tool that accepts “searchable” modules.
Our interface to our runtime will require a few functions that our CLI can call, and
our CLI will have the ability to be flexible and import Wasm modules when the appli-
cation starts. So, any module will run within our CLI tool as long as the module pro-
vides us with a search function that supports the following input: term, page, and
offset. We can then mount Wasm modules that fulfill that interface without recompil-
ing the underlying runtime application.

 To start, let’s create a simple binary that wraps this functionality together. We will call

it the journal_cli. It will need to be in the parent directory, a peer to the paper_

search_lib and paper_search projects we wrote before. Here, journal will represent

resources we may want to collect in the future. This tool will rely on a Wasm file to pro-

vide its search capabilities and allow us to run the application without rebuilding it. 

cd ..
cargo new journal_cli

We want to exclude this from our other workspaces since it is a consumer of the Wasm

file. To handle that, we need to edit the parent-level Cargo.toml. 

[workspace]

members = [
"paper_search_lib",
"paper_search"

]
exclude = ["journal_cli"]

Navigate into the journal_cli directory and add the following library to the

Cargo.toml file. 

[package]
name = "journal_cli"
version = "0.1.0"
edition = "2021"

[dependencies]
wasmedge-sdk = "0.11.2"

The only dependency we need is the WasmEdge SDK. The SDK will allow us to create

a virtual environment in which to run the Wasm file and provide us with the functions

Listing 10.19 Command: Creating a new binary and library

Listing 10.20 Cargo.toml: Excluding the library

Listing 10.21 journal_cli/Cargo.toml: Adding SDK

You will want to be in the parent directory (journal) 
with paper_search as a peer project and in the 
same directory as the workspace Cargo.toml file.

We don’t want our WasmEdge 
libraries to conflict.
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we will need to interact with the Wasm module. We can begin to think of this as our

own version of the WasmEdge binary we used earlier to call our first Wasm module.

But instead of wasmedge providing the interactions with the module, we are going to

define how we want our inputs and outputs to be handled. The following code is a bit

dense, but most of the code sets up our Wasm virtual environment for the module to

run in. The flow of the application is first to find and load the Wasm file and then

build the virtual environment. Once the file has been selected and loaded into the vir-

tual environment, we will call the function that executes the Wasm as an executable.

Open the main.rs file and add the following code. 

use std::env;
use std::path::PathBuf;
use wasmedge_sdk::{

config::{CommonConfigOptions,
ConfigBuilder,
HostRegistrationConfigOptions},

params, VmBuilder, WasmVal
};

fn main() -> Result<(), Box<dyn std::error::Error>>{
let mut args: Vec<String> = env::args().skip(1).collect();
args.reverse();
let target = args.pop().unwrap_or(

"paper_search".to_string());

let filename = format!("{}.wasm", target);
let wasm_file: PathBuf = [

"..", "target",
"wasm32-wasi",
"debug", filename.as_str()]
.iter()
.collect();

let config = ConfigBuilder::new(CommonConfigOptions::default())
.with_host_registration_config(

HostRegistrationConfigOptions::default().wasi(true))
.build()?;

assert!(config.wasi_enabled());

let mut vm = VmBuilder::new().with_config(config).build()?;

vm.wasi_module_mut()
.expect("Not found wasi module")
.initialize(None, None, None);

vm.register_module_from_file(target.as_str(), &wasm_file)?
.run_func(Some(target.as_str()), "_start", params!())?;

Ok(())
}

Listing 10.22 journal_cli/src/main.rs: Calling the main Wasm function

Dynamically loads the Wasm file we 
created before via arguments, allowing 
us to swap out Wasm files in the future.

Creates a 
configuration 
to load WASI

Loads the host configuration 
for the WasmEdge VM

Creates a new VM with the configuration
so we can load our Wasm file

Calls the main function and passes no
parameters. The function is similar to calling

wasmedge hello-world.wasm from the terminal.
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Now, go into the journal_cli directory, type cargo run, and you should see the

results pop up. The journal_cli runtime executed the underlying “main” function in

the module just the same as when you call the WasmEdge binary directly using

wasmedge paper_search.wasm. 

 Our CLI shows you how much goes into what WasmEdge has developed in their

custom runtime, and how we can start building our own. What’s interesting, though,

is that what is printed on the screen is not the output from our CLI code but, instead,

the output is from the Wasm module. Our runtime does not capture or manipulate

this output in any way; instead, it provides a mechanism to the Wasm module

(through the VM we set up) to give functionality to the print function, which goes to

STDOUT. The virtual environment we created does a lot for us, and we can manipulate

the runtime to change how we want our system to work. We can imagine a scenario

where we want to use the same search module but have the virtual environment write

to a file or compress the output. 

 What about the library we wrote? How do we access that? Again, the code requires

a little tweaking, but we need only to change "_start" to "static_search" since that

is the name of the function, and we can include parameters.

fn main() -> Result<(), Box<dyn std::error::Error>>{
...

vm.register_module_from_file(
target.as_str(), &wasm_file)?
.run_func(

Some(target.as_str()),
"static_search", params!(0, 1))?;

Ok(())
}

With the change in the run target, we can now access the search method we used ear-

lier. The functionality is the same as when we used the --reactor flag earlier with

WasmEdge. Instead of hitting the main method, we are now calling a function directly

within the module. Now we have a runtime and a Wasm module to run, but let’s add

another module to demonstrate the power of writing your own runtime and the flexi-

bility the runtime offers. 

 Before moving on, let’s revert our code from static_search to _start since this is

how our next Wasm file will be called. 

fn main() -> Result<(), Box<dyn std::error::Error>>{
...

vm.register_module_from_file(target.as_str(), &wasm_file)?
.run_func(Some(target.as_str()), "_start", params!())?;

Ok(())
}

Listing 10.23 journal_cli/src/main.rs: Calling the main Wasm function

Listing 10.24 journal_cli/src/main.rs: Calling the main Wasm function

We use the params macro 
to encode values to pass 
to our search function.
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10.5 More Wasm

Our Wasm file is loaded and registered to a virtual runtime defined by the WasmEdge

SDK, allowing us to safely execute code and providing a barrier between our CLI

application and the search library provided in the Wasm module. As a result, we can

swap out our Wasm file with another, without changing our underlying CLI code, by

pointing to a different Wasm module. To demonstrate, let’s throw together another

quick search library and test this functionality out. Instead of searching for papers as

we did in the previous section, we will search for books. We will implement the same

type of search functionality as in the paper search library. We can then use this exam-

ple to demonstrate how Wasm modules can be swapped out without changes to the

CLI, as shown in figure 10.5. 

Figure 10.5 Wasm running additional modules

Let’s go back up to the parent journal directory and create another Wasm library

called book_search. Here, we will build a library similar to the paper_search.

cd ..
cargo new book_search

Open the parent Cargo.toml file and add the new library.

[workspace]

members = [
"paper_search_lib",

Listing 10.25 Command: Creating a new binary

Listing 10.26 journal/Cargo.toml: Including the new library

VM
In this case, our VM expects the
ability to search, and therefore
both the paper and book Wasm
apps can be run within the VM (CLI)
to handle the execution and output
without changing the VM or the
Wasm library.

Wasm

paper

Wasm

book

Wasm

You need to be in the root 
directory of the project (journal).
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"paper_search",
"book_search"

]
exclude = ["journal_cli"]

We are going to add several libraries similar to our paper search in book_search/

Cargo.toml.

[package]
name = "book_search"
version = "0.1.0"
edition = "2021"

[build]
target="wasm32-wasi"

[target.wasm32-wasi]
runner = "wasmedge"

[dependencies]
tokio_wasi = { version = "1.21", features = ["rt", "macros", "net", "time"]}
reqwest_wasi = "0.11"
serde = { version = "1.0", features = ["derive"] }
serde_json = "1.0"

The biggest difference is that, although our paper search uses XML, we will be con-

suming JSON for this request. Again, we are taking different business logic and pro-

ducing APIs that fit into our generic search tool. The code should be pretty

straightforward. First, we will define the elements of the JSON object we expect to be

returned.

use serde::{Deserialize, Serialize};
use std::env;
use std::error::Error;
use std::fmt::{self, Debug, Display, Formatter};

#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct SearchResult {

pub results: Vec<Book>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct Book {

pub id: i32,
pub title: String,

}

Listing 10.27 book_search/Cargo.toml: Book search dependencies

Listing 10.28 book_search/src/main.rs: Book search core entities

 Adds a library to the 
workspace members
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After that, we will write a very similar main function that calls a search function and

prints the results.

fn main() -> Result<(), Box<dyn std::error::Error>> {
let mut args: Vec<String> = env::args().skip(1).collect();
args.reverse();
let term = args.pop().unwrap_or("rust".to_string());

let res: Vec<String> = search(term).unwrap();
for entry in res.iter() {

println!("{}", entry);
}
Ok(())

}

Next comes a copy of our search function.

pub fn search(
term: String

) -> Result<Vec<String>, Box<dyn std::error::Error>> {
let rt = tokio::runtime::Builder::new_current_thread()

.enable_all()

.build()

.unwrap();
let searchresult: SearchResult = rt.block_on(async {call_api(term)

.await}).unwrap();
let res = searchresult

.results

.into_iter()

.map(|e| format!("{}", e.title))

.collect::<Vec<String>>();
return Ok::<Vec<String>, Box<dyn std::error::Error>>(res);

}

pub async fn call_api(term: String) -> Result<SearchResult, reqwest::Error> {
let http_response = reqwest::get(format!(

"http://gutendex.com/books/?search={}",
term

))
.await?;
let b = http_response.text().await?;
let res: SearchResult = serde_json::from_str(b.as_str()).unwrap();
return Ok(res);

}

Looks familiar, right? JSON definitions are provided and deserialized from a book

search result. Let’s build the Wasm file and then test our CLI call.

Listing 10.29 book_search/src/main.rs: Book search main function for search

Listing 10.30 book_search/src/main.rs: Book search http call

Captures the 
term from the 
input argument

Runs the 
search termPrints results for each 

value to STDOUT

We do not want to run this async, so we are going
to block the call. To do this, we need a thread.

We will block this thread until a 
response returns from the API.

Formats the book 
values to strings

Calls the book API with 
a given search term

Serializes output into the
previously defined structs



270 CHAPTER 10 WebAssembly interface for refactoring

 

cd ..
cargo build --target wasm32-wasi

Now, go back to our CLI tool. Since we made the CLI dynamic in terms of which

library it uses, you should be able to run the command but pass the new library name.

cd journal_cli
cargo run book_search

When the code executes, you should see some results that are different than the ones

from the paper_search library because our CLI tool is loading a different Wasm mod-

ule than before. Passing in paper_search should give you results from the paper_

search Wasm module we used before. Without recompiling, we can change the

underlying behavior of the CLI tool by fulfilling the simple API definition defined by

the vm object that we created. This loads the module and calls the desired function to

do our search. Each underlying function acts the same but calls entirely different end-

points in entirely different formats. Right now, this works because we are executing

Wasm modules directly, but what if we want to use the underlying functions like we

did earlier? To do that, we will need to dive into Wasm memory. 

10.6 Wasm memory

To begin, we should cover how Wasm and WASI manage memory. As mentioned

before, Wasm operates in a sandboxed environment, meaning that it relies on the

underlying VM for access to the actual machine’s hardware and services. Additionally,

each Wasm module manages memory within the module. The VM then has the ability

to reach into the module to both write to and read from a memory address. This

requires the VM to be responsible for the data being read from the module without

the fear that the execution within the module will affect the underlying system. Nor

do we need to worry about multiple Wasm modules grabbing or manipulating mem-

ory within another module. The onus falls on the VM, thereby making the design of

your VM extremely important. 

 Wasm’s memory structure is a simple, resizable ArrayBuffer that stores raw bytes

of data. As we mentioned earlier, the Wasm standard has a few primitive types, but

none of them are string or character primitives. These values vary from system to sys-

tem and often take the form of byte data, which again varies from machine to

machine. Yet, you might recall that there was a fifth value that Wasm supports: v128,

or a vector with 128 bits; the VM uses it for data like strings. Module memory can grow

and be changed through various memory instructions or the host runtime. 

Listing 10.31 Command: Building Wasm files

Listing 10.32 Command: Running a book search

Be in the root project 
directory (journal).

Compiles all Wasm targets 
(paper_search and book_search)
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 To use memory within the module, we need the ability to allocate memory, retrieve

its location, write to that memory slot, run a function, and read the results from a loca-

tion in memory. Low-level operations like these are normally outside the scope of

many developers, so this may seem a little tedious, but remember that we are building

a VM and will therefore need to write some lower-level, systems-like code to manage

memory. However, libraries and tools can be written to mitigate the need to rewrite

these functions and reduce repeated code. This is complicated because Wasm is an

assembly language that runs on a specific target without knowing the underlying

architecture of the machine it is running on. The way an application or program rep-

resents a value in memory can differ based on whether it’s running on a 64- or 32-bit

machine. Wasm doesn’t try to fit all of these different use cases because it needs to be

simple and low-level.

 The calling application and the Wasm file itself need to agree on how to allocate

the data and how to read the data from memory. With each instance of a Wasm file

running, the module will be given a certain allocation of memory, with a pointer to

that data being known only to that module. The memory module is shared between

the VM and the module, as shown in figure 10.6.

Figure 10.6 Wasm memory

The module needs to provide a way to allocate the memory and return the pointer of

the address to the calling function. Let’s add this method to our code. Open both

paper_search/src/main.rs and book_search/src/main.rs and add the following.

use std::os::raw::{c_void, c_int};
use std::mem;

Listing 10.33 [paper_search|book_search]/src/main.rs: Allocating function

Wasm

paper

Wasm

book

Wasm

VM

Memory

The virtual machine provides
to the Wasm file the ability to
register memory that the VM
and Wasm can both read and
write from without explicitly
interacting with the system’s
memory.
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#[no_mangle]
pub extern fn allocate(size: usize) -> *mut c_void {

let mut buffer = Vec::with_capacity(size);
let pointer = buffer.as_mut_ptr();
mem::forget(buffer);

pointer as *mut c_void
}

Now, the host application can allocate a specific amount of memory for whatever it

needs to pass in, as shown in figure 10.7.

Figure 10.7 Wasm memory allocation

Having this tool in place will allow us to pass a string into a function and have the

function write the results back to memory, where the calling function can then extract

the data. To do that, we need to open that functionality up within our CLI runtime. It

will be the responsibility of the runtime to expose memory to the module and provide

the ability to read and write to that memory. So, open journal_cli/src/main.rs and

rewrite the main function.

fn main() -> Result<(), Box<dyn std::error::Error>>{

...

let term = args.pop().unwrap_or("type".to_string());

Listing 10.34 journal_cli/main.rs: Rewriting the CLI call to function

Allocates the buffer based 
on the size provided by 
the calling service

Finds the pointer 
in linear memory

Clears its 
contents

Returns 
pointer value

Wasm

paper

Wasm

book

Wasm

VM

Memory

allocate(size: usize)

Call

allocate("rust".len())

4

Allocating the value within Wasm
allows us to pass values into the
Wasm library. Once there, the
Wasm file can read the values
once inserted.
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let config = ConfigBuilder::new(CommonConfigOptions::default())
.with_host_registration_config(HostRegistrationConfigOptions::default

().wasi(true))
.build()?;

assert!(config.wasi_enabled());

let mut vm = VmBuilder::new().with_config(config).build()?;

vm.wasi_module_mut()
.expect("Not found wasi module")
.initialize(None, None, None);

let m = vm.clone()
.register_module_from_file(target.to_string(), &wasm_file)?;

let env_instance = m.named_module(target.to_string())?;

let exec = vm.executor();

let mut memory = env_instance.memory("memory")?;
let allocate = env_instance.func("allocate")?;
let search = env_instance.func("memory_search")?;

let term_len: i32 = term.len() as i32;
let iptr = allocate.run(exec, params!(term_len))?[0].to_i32();
let uptr: u32 = iptr as u32;
memory.write(term, uptr);

let iresptr = search.run(exec, params!(iptr))?[0].to_i32();
let uresptr: u32 = iresptr as u32;
let val = memory.read_string(uresptr, 1024)?;
let val = val.trim_matches(char::from(0));

println!("{:?}", val);
Ok(())

}

You can see that this is a little complicated for a setup, but we’ve seen a good portion

of it before. For us to access the memory modules, we need a more complex VM, so

we had to unwrap a few more tools. By grabbing our module’s instance, we can then

extract functions and abstractions like memory. We then allocate the space we need to

pass in our value. Calling the allocation function can then ensure we can write to the

memory without overflow, as shown in figure 10.8. Once the value is loaded, we can

call our search function (yet to be written!) and await the pointer to where the

response is written. We will read 1 KB of data and print the results from the host.

There are more dynamic and sophisticated ways of returning response data, but we

will not explore them here.

Creates a config with the 
wasi option enabled

Builds a new 
VM just like we 
did previously

This time we want to
grab the module object.

Using the module, grabs
the environment to grab

functions and memory

Grabs the executor 
for the VM

Grabs the memory object 
from the environment

Grabs the allocation function 
from the environmentGrabs the search function 

from the environment

Runs the allocation function with
the length of our search term

Writes the term 
to memory

Runs the 
search 
function with 
a pointer

Reads the 
return string 
value from 
memory
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Figure 10.8 Wasm reading and writing to the memory buffer

If you run this, you will get a runtime error from the Wasm library because we don’t

have the search function written yet. So, let’s do that for both paper and book

searches. Starting with paper_search/src/main.rs, we will add the new memory

search method.

use std::ffi::{CStr, c_char, CString};

#[no_mangle]
pub fn memory_search(term: *mut c_char) -> *mut c_char {

let t = unsafe { CStr::from_ptr(term).to_bytes().to_vec() };
let mut output = t.to_vec();
let search_term: String = String::from_utf8(output).unwrap();
let res_string = search(search_term, 0, 1).unwrap();
let mut res: Vec<u8> = res_string.into_iter().nth(0).unwrap().into();
res.resize(1024, 0); 3((CO22-3))
unsafe { CString::from_vec_unchecked(res)}.into_raw()

}

This function will receive the pointer we passed from the VM that was returned as part

of our allocation call. We will then read the string from memory and then pass it to our

search function. We are only interested in returning one value, so we limit the results

and pop the value from our vector. We then write this to the same memory slot, just

increasing the size to 1 KB. When we are done, we need to return the new pointer in

case the memory address is moved. We will write a similar function for book_search.

Listing 10.35 paper_search/src/main.rs: Adding memory search

Wasm

[aper

Wasm

book

Wasm

VM

Memory

search(*pointer)

Write "rust" 

to memory

R

U

S

T
Write

Read

This value is passed along, and a
response is written by the Wasm
file and then read and displayed
by the virtual machine.

Reads the term
string from memory

Calls the
search

function with
the termExpands the vector to 

1 KB for the result

Gets the vector
pointer response
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use std::ffi::{CStr, c_char, CString};

#[no_mangle]
pub fn memory_search(term: *mut c_char) -> *mut c_char {

let t = unsafe { CStr::from_ptr(term).to_bytes().to_vec() };
let mut output = t.to_vec();
let search_term: String = String::from_utf8(output).unwrap();
let res_string = search(search_term).unwrap();
let mut res: Vec<u8> = res_string.into_iter().nth(0).unwrap().into();
res.resize(1024, 0); 3((CO23-3))
unsafe { CString::from_vec_unchecked(res)}.into_raw()

}

These functions are almost the same: the only difference is that our search function in

this library doesn’t support pagination. Since we have both functions written and the

CLI up to date, we can recompile our Wasm modules and test them out! From the

root directory of the project, run the following.

cd ..
cargo build --target wasm32-wasi

Then change directories to journal_cli and run the search.

cargo run book_search rust
cargo run paper_search rust

You should see results! While this section of code around memory management seems

complicated, you can always write a shared library that simplifies that process or uses a

library that helps. The Wasm ecosystem is shifting fast, and various tools and libraries

are coming out to aid in this process. Unfortunately, listing them here would only pro-

vide an outdated list. Despite this, you can hopefully start to see the flexibility that

Wasm provides. 

10.7 Just the beginning

Unlike C, C++, Python, and JavaScript, WebAssembly is on the front edge of technol-

ogy, with standards continuing to be written and changed. What we’ve explored over

the last two chapters uses current technologies but with already established Wasm

standards. We are at the beginning of the possibilities of this technology, and it is

poised to become much more influential as time progresses. We include WebAssembly

Listing 10.36 book_search/src/main.rs: Adding memory search

Listing 10.37 Command: Building Wasm files

Listing 10.38 Command: Running a book search

Reads the term
string from memory

Calls the
search

function with
the termExpands the vector to 

1 KB for the result

Gets the vector
pointer response

Root of the 
project (journal)Recompiles 

Wasm targets
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as part of the refactoring process because it demonstrates how well Rust is positioned

to refactor almost anything that is out there today. It may not always be an easy fit, but

plenty of tools are available that allow us to move code toward Rust or at least help put

Rust in our code.

Summary

 WASI is the standard for integrating Wasm modules into a universal runtime, as

demonstrated through the WasmEdge SDK and runtime.

 WasmEdge is one implementation of this runtime and provides an SDK to write

applications that consume Wasm, like the CLI search tool we constructed.

 Wasm’s type system provides vector definitions and manual memory manage-

ment, which can have tools wrapped around it for higher levels of flexibility

without maintaining a complex type system.

 The Wasm runtime provides a shared, sandboxed, linear memory module for

the VM and the module to use to allow for a secure runtime.

 To use the memory model, functions must be created to allocate and deallocate

memory within the module to communicate with the defined VM. 
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